DESIGN AND MANUFACTURING OF LIVING POULTRY HARVESTER

By

HAYTHAM SAMY HELMY
B.Sc. Agric. Sci. (Agricultural Engineering), Fac. of Agric., Cairo Univ., 2000
M.Sc. Agric. Sci. (Agricultural Engineering), Fac. of Agric., Cairo Univ., 2006

THESIS
Submitted in Partial fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences
(Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Cairo University
EGYPT

2012
SUPERVISION SHEET

DESIGN AND MANUFACTURING OF LIVING POULTRY HARVESTER

Ph.D. Thesis
In
Agric. Sci. (Agricultural Engineering)

By

HAYTHAM SAMY HELMY

SUPERVISION COMMITTEE

Dr. AHMED EL-RAIE EMAM SULIMAN
Professor of Agricultural Engineering, Fac. of Agric., Cairo University

Dr. KHALED MOHAMED ABDELBARY
Assistant Prof. of Agricultural Engineering, Fac. of Agric., Cairo University
APPROVAL SHEET

DESIGN AND MANUFACTURING OF LIVING POULTRY HARVESTER

Ph.D. Thesis
In
Agric. Sci. (Agricultural Engineering)

By

HAYTHAM SAMY HELMY

Approval Committee

Dr. SAMIR AHMED TAYEL……………………………………
Professor of Agricultural Engineering, Fac. of Agric. Eng, Al- Azhar University

Dr. SAMY MOHAMED YOUNIS…………………………
Professor of Agricultural Engineering, Fac. of Agric., Cairo University

Dr. AHMED EL-RAIE EMAM SULIMAN………………
Professor of Agricultural Engineering, Fac. of Agric., Cairo University

Date: / /

تصميم وتصنيع حصادة دواجن حية

رسالة مقدمة من

هيثم سامي حلمي
بكالوريوس في العلوم الزراعية (هندسة زراعية)، كلية الزراعة، جامعة القاهرة، 2000
ماجستير في العلوم الزراعية (هندسة زراعية)، كلية الزراعة، جامعة القاهرة، 2006

للحصول على درجة

دكتوراة الفلسفة

في

العلوم الزراعية

(هندسة زراعية)

قسم الهندسة الزراعية
كلية الزراعة
جامعة القاهرة
مصر

2012
تصميم وتصنيع حصادا دواجن حية

رسالة دكتوراة الفلسفة
في العلوم الزراعية
(مهندس زراعية)

مقدمة من

هيئم سامي حلمي
بكالوريوس في العلوم الزراعية (مهندس زراعية)، كلية الزراعة، جامعة القاهرة، 2000
ماجستير في العلوم الزراعية (مهندس زراعية)، كلية الزراعة، جامعة القاهرة، 2006

لجنة الحكم

دكتور / سمير أحمد طابل
أستاذ الهندسة الزراعية، كلية الهندسة الزراعية، جامعة الأزهر

دكتور / سامي محمد يونس
أستاذ الهندسة الزراعية، قسم الهندسة الزراعية، كلية الزراعة، جامعة القاهرة

دكتور / أحمد الراري إمام سليمان
أستاذ الهندسة الزراعية، قسم الهندسة الزراعية، كلية الزراعة، جامعة القاهرة

التاريخ / /
تصميم وتصنيع حصادة دواجن حية

رسالة دكتوراة الفلسفة
في العلوم الزراعية
(هندسة زراعية)

مقدمة من

هيثم سامي حلمي
بكالوريوس في العلوم الزراعية (هندسة زراعية)، كلية الزراعة، جامعة القاهرة، 2000
ماجستير في العلوم الزراعية (هندسة زراعية)، كلية الزراعة، جامعة القاهرة، 2006

لجنة الإشراف

دكتور / أحمد الراعي إمام سليمان
أستاذ الهندسة الزراعية، كلية الزراعة، جامعة القاهرة

دكتور / خالد محمد عبد الباري
مدرس الهندسة الزراعية، كلية الزراعة، جامعة القاهرة
DEDICATION

I wish to express my sincere thanks, deepest gratitude and appreciation to Dr. Ahmed El-Raie Emam Suliman Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University and Dr. Khaled Mohamed Abdelbary Assistant Prof. of Agricultural Engineering, Faculty of Agriculture, Cairo University for supervision, continued assistance and their guidance through the course of study and revision the manuscript of this thesis.

Grateful appreciation is also extended to all staff members of Agricultural Engineering Department, Fac. of Agriculture, Cairo University also all staff members of Animal Production Department, Faculty of Agriculture, Cairo University who guide in the recent thesis and also all other persons who help in the recent work. Special deep appreciation is given to my father, my mother, my sister and my brother. Also, I dedicate this work to my wife and my lovely kids Nour & Mahmoud.
CONTENTS

INTRODUCTION ... 1

REVIEW OF LITERATURE .. 5

1. Poultry catching handling and time requirements 10
 a. Catching and crating ... 12
 b. Transport and lairage ... 13
 c. The broiler’s last day of life 13
 d. Catching and loading ... 14
 e. Transporting, holding and unloading 15
 f. Labor time requirements in broiler enterprises 16

2. Poultry catching techniques ... 18
 a. Poultry manual catching technique 18
 b. Poultry mechanical catching technique 20

3. Comparison studies between poultry catching techniques 23

4. Benefits of mechanical catching 32
 a. General benefits and advantages 32
 b. Economical benefits ... 33
 c. Effects on production costs 35
 d. Effects on consumption and profits 37

5. Time motion study and modeling of the mechanical chicken catching systems .. 37

6. Poultry harvesting machines .. 51
 a. Past attempts at mechanization 52
 b. Current attempts at mechanization 54
 c. Related patent .. 63
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relative contributions of the animal production in value terms in</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Egypt in 2005</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chicken catching machines</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>The catching machine "Chicken Cat Harvester"</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>The Anglia Auto-flow mechanical catching unit</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Catching reel on the mechanical catching unit</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>Structure of a neural network for predicting the time required to</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>mechanically harvest a poultry house</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The original AFRC pick up head</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>Four rotors pick up head</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>(a) Four rotor sweeping head; (b) Three rotor sweeping head</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>The AFRC mark I experimental broiler harvester</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>Heart rate traces for machine and manual harvesting of broilers.</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Live poultry conveyor and counter</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>Poultry handling system</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>Method and apparatus for gathering live poultry</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>Poultry loading apparatus</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>Live poultry catcher</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>Apparatus for catching and crating poultry</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>Portable apparatus for removing live poultry from a poultry house</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>Poultry loading apparatus and method</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>Poultry conveyor means</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>Automatic coop loader</td>
<td>69</td>
</tr>
<tr>
<td>22</td>
<td>System for harvesting and transporting chickens</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>Live poultry conveying, counting and crating device</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>Poultry loading apparatus</td>
<td>71</td>
</tr>
<tr>
<td>25</td>
<td>Poultry harvesting assembly</td>
<td>72</td>
</tr>
<tr>
<td>26</td>
<td>Device for packing poultry in a boxes or containers</td>
<td>72</td>
</tr>
</tbody>
</table>
Chicken harvesting machine…………………………………….. 73
Device for packing poultry in a boxes or containers……………… 73
Method and apparatus for collecting and conveying objects from a surface…………………………………………………………… 74
Catching apparatus for poultry, in particular chicks……………….. 75
Device for picking up animals e.g. chickens from a ground surface…………………………………………………………………… 76
Rotor assemblies…………………………………………………….. 77
Poultry handling assembly………………………………………… 77
Poultry harvester……………………………………………………… 78
Poultry harvester……………………………………………………… 79
Poultry harvester……………………………………………………… 79
Poultry collection device……………………………………………. 80
Method and device for collecting poultry and transporting the poultry to a slaughterhouse…………………………………………... 81
Method and a device for moving chickens or other poultry……….. 81
Method, apparatus and system for filling chicken cages………….. 82
Machine development procedure…………………………………… 83
Weight versus age of commercial broilers………………………… 86
Weight versus age of broilers………………………………………… 87
Weight versus age of turkeys………………………………………... 87
Standing height and sitting height versus weight of broilers…….. 88
Growth curve and absolute growth rate for body weight……….. 91
Growth curve and absolute growth rate for breast weight………. 91
Growth curve and absolute growth rate for leg weight…………… 92
Feed consumption by age and the polynomial function………….. 92
Feed conversion by age and the polynomial function…………….. 93
Bird’s body measurements………………………………………….. 101
Prototype’s proposed parts………………………………………… 104
Prototype’s proposed parts………………………………………… 105
Different views of prototype design ………………………………. 107
Elevated device of prototype’s main frame and some parts …….. 108
Prototype’s power source and its related components

Belt’s frame design and views

Belt’s frame, moving drums and anti tight

Different views of the designed entry part

Belt’s feeding bucket

Bucket’s supporting frame

Sponge sides and elevating path

Top view of the prototype’s overall design

Prototype’s guiding hand and contact key

Open belt length and power transmitted

Limiting angle of friction and the angle of repose

Angles and slope indication facilities

El-Rabie poultry company farm

Drawer’s preparing process

Prototype’s arranging process

Force and reactions illustration

Birds’ theoretical number for each man for the farm (BN_{man-farm}) and each house (BN_{man-house})

Operating cycles’ theoretical number for each man for the farm (OCN_{man-farm}) and each house (OCN_{man-house})

Clearance rate for the crew for each house (CR_{crew-house})

Clearance rate for one man for each house (CR_{man-house})

Operating cycle time for one man of the crew (OCT_{man})

Total labor’s cost (TLC)

Mean and Mode values for birds’ space axes

Birds’ weights attribute

Absolute frequency attribute for birds’ weights

Absolute frequency attribute for birds’ body length

Absolute frequency attribute for birds’ leg length

Absolute frequency attribute for birds’ body height

Absolute frequency attribute for birds’ stretching body height
Absolute frequency attribute for birds’ body width

Absolute frequency attribute for birds’ total body width

Absolute frequency attribute for birds’ breast circumference

Absolute frequency attribute for birds’ relax standing height

Absolute frequency attribute for birds’ sitting height

Birds’ External Indices

Mean and Mode values for bird’s main space axes

Bird’s force and reactions analysis with proposed sloping belt

Motion and path analysis of birds as projectiles

Different views of harvesting machine prototype

Birds’ heart beating rate

Birds’ free case in face of the prototype, (a) prepare the birds, (b) elevating birds and (c) natural birds density

Birds’ guiding and elevating process

Prototype’s sponge sides

Belt’s elevating process

Prototype’s packing process

Trails’ summarized data

Bird’s portion of time

Prototype’s overall operating rate

Prototype’s actual overall rate
<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The value of animal production relative to that of other agricultural activities</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Labor time requirement for broiler depending on flock size</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Labor time requirement (calculated) per growth period for broiler depending on the flock size</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Mean percentage (SD) of carcass bruising broiler following processing</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Means ± SEM of general characteristics of the flocks for mechanical and manual catching</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Mean percentages ± SEM of Dead on Arrival (DOA) and bruises on legs, breast and wings for mechanical and manual catching</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Summary of houses and catching times</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Nomenclature and observations recorded</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>Contribution of catching components to sequence time</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Contribution of catching components as a percentage contribution to sequence time</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Influence of distance on catching operation (time observations)</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Influence of distance on catching operation, percentage of contribution to sequence time and average catching unit speed</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>Sample results from the sensitivity analysis, showing how changes in house dimensions effected the overall harvest time</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Sample results from the sensitivity analysis, showing how changes in the portion of time spent in activity influenced the overall harvest time</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>Space required to performing different behaviors</td>
<td>84</td>
</tr>
<tr>
<td>16</td>
<td>Mean values for body weight and body measurements</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>Correlation coefficients between BW and body measurements</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>Prediction of (BW, g) on the basis of (BL, cm) or/and (CC, cm)</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>Live weight of male turkeys BIG-6(g.)</td>
<td>94</td>
</tr>
<tr>
<td>20</td>
<td>Body configuration of male turkeys BIG 6 (%)</td>
<td>95</td>
</tr>
<tr>
<td>21</td>
<td>Least square means and standard error for body weights and body linear measurements at different ages as affected by strains</td>
<td>96</td>
</tr>
<tr>
<td>22</td>
<td>Estimates of correlation for body weight and body dimension at day old and 4 weeks of age</td>
<td>96</td>
</tr>
</tbody>
</table>
Estimates of correlation for body weight and body dimension at 8 and 12 weeks of age.

Estimates of correlation for body weight and body dimension at 16 and 20 weeks of age.

First production cycle’s data.

Second production cycle’s data.

Third production cycle’s data.

Mechanical harvesting rates.

Sample’s statistical parameters and measurements.

Correlation coefficient value between the body measurements and the significant test.

Bird’s body weight (W)’ prediction equations.

Bird’s body length (BL)’ prediction equations.

Bird’s leg length (LL)’ prediction equations.

Bird’s body height (BH)’ prediction equations.

Bird’s stretching body height (SBH)’ prediction equations.

Bird’s body width (BW)’ prediction equations.

Bird’s total body width (TBW)’ prediction equations.

Bird’s breast circumference (BC)’ prediction equations.

Bird’s relax standing height (RSH)’ prediction equations.

Bird’s main space axes and bird’s maximum space volume.

Prototype fixed and variable cost.
INTRODUCTION

Egypt’s population fast growth rate is one of the main constraints hindering its development. Egypt is not a self-sustained country in food production and remains one of the world’s largest food importers. Egypt continues to make strides towards achieving self sufficiency by using new agricultural technologies and reclaiming new lands. Food security will remain at the top of Egypt’s priority list of which securing sufficient animal protein is the most challenging task compared to all the other nutritional requirements. Poultry production can provide quick and a most cost effective solutions for this nutritional problem, more over it will help in reducing poverty by creating opportunities for employment which are badly needed within the agricultural sector (UNDP, 2004; CAPMAS, 2005).

The poultry production sector in Egypt has witnessed dramatic development as a result of new economic trends and policy shifts during the last decade (Abdelbary, 2003). The structure of the poultry sector in Egypt consists of two main divisions: poultry enterprises and the household poultry sector (Croppenstedt, 2006).

During the 1990’s the poultry industries grew at around 8.7 percent. With over 17 billion L.E. investments and 5 billion L.E. (1$ = approximately 5.75 L.E.) working capital in 2004. The poultry sector provides job opportunities for approximately 1.4 million employees when it is operational at its full potential (Maged
and Hamdey, 2006). In addition, IDSC (2008) declared that the Egyptian bird’s production reaches 800 million birds annually.

The harvesting stage is one of the important and emergency stages. For poultry, the harvesting stage is very important and critical stage done manually or mechanically and so that it must be done in a suitable method to avoid the huge losses that would be occur in two major passes, firstly the losses in the product and the second is the losses related to the human resources, economics and management.

The commercial catching of broiler chickens and other birds that are headed for the slaughterhouse is often a violent process in which birds are manually caught by workers who carry them upside down by one leg, four or six to a hand, before throwing them forcefully into crates on transport vehicles. During the process, or as a result of it, birds suffer through great stress, broken bones, bruising and even death (Cem, 2004). To reduce injury losses and to decrease labor costs, mechanical harvesters have been introduced as alternatives to conventional manual catching of poultry which catch birds and conveyed it with belt to transport crates. It is also important to note that machines can catch at approximately the same rate as manual catching crews (Associated Press, 2003) but do not fatigue or slow down at the end of the shift like their human counterparts. Also, improvements in birds welfare can only be achieved if the utmost care is taken to find a well designed mechanized system that handles birds gently. Human handling must be made a foremost priority in order to avoid the same problems
that are associated with manual methods (Cem, 2004). Moreover, not only does the use of machines improve welfare for birds during the catching process, it also results in financial savings for the producer (Cem, 2004). Finally, the most recent of these systems are less damaging to birds than conventional manual catching (HSUS, 2006).

In Egypt, manual harvesting without any mechanical implementation, compared with the international development, reveals a huge gap and leads to the human resources problems which influence the product and finally the main result is the huge economic losses.

The main aim of recent study is to investigate the poultry harvesting period with engineering approach in an attempt to provide a mechanical prototype for moving poultry from the surface and convey it with belts device to collecting drawer without any danger or injuries.

Consequently, to achieve most of its objectives the present study was carried out in three separate but interrelated stages as follows:

First stage: present an investigation for the important data related to the harvesting period and make a case study under local conditions to achieve the important parameters values and finally evaluate the situation.
Second stage: Study and determine some important dimensional, dynamical and physiological properties and measures for birds to be as helpful and supported data-bases in design and other treatments.

Third stage: Design, manufacture and test the mechanical proposed prototype for moving and packing birds without any danger or injuries.
REVIEW OF LITERATURE

Egypt’s population fast growth rate is one of the main constraints hindering its development. The others are high illiteracy rates, limitation of arable land and scarce water resources. In addition, Egypt is not a self-sustained country in food production and remains one of the world’s largest food importers (AAFC, 2004). Although Egypt’s Government makes great efforts to increase its food production and reducing the food gap, high population growth rate paired with slow growth in agricultural yields makes Egypt depending on food importation to fulfill its growing domestic demands. Egypt continues to make strides towards achieving self sufficiency by using new agricultural technologies and reclaiming new lands (CAPMAS, 2005).

Poultry industry is relatively more efficient than the red meat industry in providing a cheap protein source to fulfill Egyptian population requirements (Abdelbary, 2003). Poultry meat is popular among Egyptian consumers across all income categories, because of its low cost compared to red meat and fish. Poultry also represents an income source for many poor families who practice traditional aviculture. About 90 percent of rural households and a great number of urban households rely on aviculture as a clean and cheap source for animal protein and as a contributor to income, especially given the rising price of red meat during the period after 2004/2005. Also, poultry production differs from other animal production activities in several ways. The most important is the rate of capital circulation while