SCORING SYSTEMS IN PEDIATRIC INTENSIVE CARE UNIT

Thesis
Submitted for fulfillment of M.D.
Degree in pediatrics

By
Shereen Abdel Monem Mohamed
M.Sc
Faculty of Medicine-Cairo University

Under Supervision of

Prof. Dr. Nabil AbdelAziz Mohsen
Professor of Pediatrics
Faculty of Medicine-Cairo University

Dr. Mohamed Saad ElBaz
Lecturer of pediatrics
Faculty of Medicine-Cairo University

Dr. Hanaa Ibrahim Rady
Lecturer of pediatrics
Faculty of Medicine-Cairo University

Faculty of Medicine
Cairo University
2012
Acknowledgment

I wish to express my deepest gratitude to Prof. Dr. Nabil AbdelAziz Mohsen. His instructive guidance, continuous support, enthusiastic encouragement and scientific supervision and correction were beyond words can convey.

I am also deeply grateful to Dr. Mohamed Saad ElBaz. His constant help, precious advice, constructive criticism and excellent supervision, has enabled this work to reach its final form.

Endless thanks goes to Dr. Hanaa Ibrahim Rady. I will always be grateful for the time and tremendous effort she has put into this study.

Special thanks to my family for their prayers, support and continuous encouragement.
Abstract

Background: Little is known of the exact causes of death and the impact of general risk factors that may complicate the course of critically ill patients. Scoring systems for use in ICU patients allow an assessment.

Objectives: Apply commonly used scores for assessment of illness severity and determine their relation to patient outcome. And identify the combination of factors capable of predicting patient’s outcome.

Methods: This study included 231 patients were admitted to PICU of Cairo University Pediatric Hospital over one year. PRISM III, PIM2, PEMOD, PELOD, TISS and SOFA scores were obtained for every patient within the day of admission and patients were evaluated on follow up using SOFA score and TISS. Then each score parameter was evaluated separately.

Results: Significant positive correlations were found between PRISM III, PIM2, PELOD, PEMOD, SOFA and TISS on the day of admission and mortalities of PICU (p<0.0001). TISS and SOFA score had the highest discrimination ability (area under ROC curve: 0.81, 0.765 respectively). Also significant positive correlations were found between SOFA score and TISS scores on day 1, 3 and 7 and mortalities of PICU (p<0.0001). TISS had more ability of discrimination than SOFA score on day 1 (area under ROC curve 0.843, 0.787 respectively). Other factors that increase risk of mortality were longer length of stay, mechanical ventilation, vaso-active drugs and dialysis.

Conclusion: Scoring systems applied in our PICU had good discrimination ability. TISS was a good tool for following up patients. LOS, use of mechanical ventilation and inotropes were risk factors of mortality.
Key words: Scoring systems - Pediatric intensive care unit- Mortality rate- Critical care-illness severity- multiple organ dysfunction.
List of Content

List of abbreviations ... v
List of tables ... viii
List of figures .. x
Introduction ... 1
Aim of work ... 3
Review of literature .. 4
Chapter I .. 4
 Patterns of PICU admission ... 6
 PICU monitoring .. 17
Chapter II .. 25
 The ideal scoring system ... 29
 Reliability of a score ... 30
 Validity of a score ... 31
 Classification of scoring systems .. 33
 Applications of scoring systems .. 38
 Limitations of using scoring systems .. 43
 Examples of scores .. 47
Patients and methods ... 71
Results ... 73
Discussion .. 99
Conclusion and Recommendations .. 110
Summary .. 112
References ... 114
الملخص العربي .. 135
List of Abbreviations

ACTH Adrenocorticotropic hormone
ADH anti-diuretic hormone
AIDS acquired immune deficiency syndrome
APACHE Acute Physiology and Chronic Health Evaluations
ARF acute respiratory failure
ARDS acute respiratory distress syndrome
ARF Acute renal failure
ATN acute tubular necrosis
BIS bispectral index
BMT bone marrow transplantation
BSIs blood stream infections
CAUTI Catheter-associated urinary tract
CDC Centers for Disease Control and Prevention
CFU colony-forming units
CHD congenital heart disease
CHF congestive heart failure
CMP cardiomyopathy
CMM Cancer Mortality Model
CNS central nervous system
CONS coagulase negative staff
CP Child–Pugh
CPA Cardiopulmonary arrest
CPR cardiopulmonary resuscitation
CRIB Clinical Risk Index for Babies
CSEP Clinically suspected sepsis
CSF cerebrospinal fluid.
CVC central venous catheter
CVP central venous pressure
CVS cardiovascular
DIC disseminated intra-vascular coagulation
DKA Diabetic keto-acidosis
DMD Duchenne muscular dystrophy
DORA Dynamic Objective Risk Assessment
DRGs Diagnostic Related Groupings
DSN Dialysis Surveillance Network
ECG electrocardiogram
EEG electroencephalograms
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EENT</td>
<td>eye, ear, nose, and throat</td>
</tr>
<tr>
<td>ENT</td>
<td>Ear, Nose, & Throat</td>
</tr>
<tr>
<td>EtCO2</td>
<td>End-tidal CO2</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>HAI</td>
<td>Health care associated infection</td>
</tr>
<tr>
<td>ICP</td>
<td>intracranial pressure</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IOM</td>
<td>institute of medicine</td>
</tr>
<tr>
<td>LOS</td>
<td>length of stay</td>
</tr>
<tr>
<td>LRI</td>
<td>lower respiratory tract infections</td>
</tr>
<tr>
<td>MODS</td>
<td>Multiple organ dysfunction syndrome</td>
</tr>
<tr>
<td>MPM</td>
<td>Mortality Probability Models</td>
</tr>
<tr>
<td>NaSH</td>
<td>National Surveillance System for Healthcare Workers</td>
</tr>
<tr>
<td>NICU</td>
<td>neonatal ICU</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin-resistant S aureus (MRSA)</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network</td>
</tr>
<tr>
<td>NMD</td>
<td>Neuromuscular disorders</td>
</tr>
<tr>
<td>NNIS</td>
<td>National Nosocomial Infection Surveillance System</td>
</tr>
<tr>
<td>PaCO2</td>
<td>arterial carbon dioxide pressure</td>
</tr>
<tr>
<td>PEMOD</td>
<td>PEdiatric Multiple Organ Dysfunction</td>
</tr>
<tr>
<td>PELOD</td>
<td>PEdiatric Logistic Organ Dysfunction</td>
</tr>
<tr>
<td>PIM</td>
<td>Pediatric Index of Mortality</td>
</tr>
<tr>
<td>PICANet</td>
<td>Pediatric Intensive Care Audit network</td>
</tr>
<tr>
<td>PICU</td>
<td>Pediatric intensive care unit</td>
</tr>
<tr>
<td>PNE</td>
<td>pneumonia</td>
</tr>
<tr>
<td>PO2</td>
<td>partial pressure of oxygen</td>
</tr>
<tr>
<td>PPS</td>
<td>Prospective Payment System</td>
</tr>
<tr>
<td>PRISM</td>
<td>Pediatric Risk of Mortality</td>
</tr>
<tr>
<td>PSI</td>
<td>Physiologic Stability Index</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>RIFLE</td>
<td>Risk, injury, failure, loss and end-stage kidney classification</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operating characteristic</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus.</td>
</tr>
<tr>
<td>SAPS</td>
<td>Simplified Acute Physiology Score</td>
</tr>
<tr>
<td>SENIC</td>
<td>Study of the Efficacy of Nosocomial Infection Control</td>
</tr>
<tr>
<td>SIADH</td>
<td>syndrome of inappropriate secretion of antidiuretic hormone</td>
</tr>
<tr>
<td>SIRS</td>
<td>systemic inflammatory response syndrome</td>
</tr>
<tr>
<td>SLOS/R</td>
<td>standardized length of stay ratio</td>
</tr>
<tr>
<td>SMA</td>
<td>spinal muscular atrophy</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SMR</td>
<td>standardized mortality ratio</td>
</tr>
<tr>
<td>SNAP</td>
<td>Score for Neonatal Acute Physiology</td>
</tr>
<tr>
<td>SOFA</td>
<td>Sepsis-related Organ Failure Assessment</td>
</tr>
<tr>
<td>SSI</td>
<td>surgical site infections</td>
</tr>
<tr>
<td>SST</td>
<td>skin and soft tissue</td>
</tr>
<tr>
<td>TcCO2</td>
<td>transcutaneous carbon dioxide tension</td>
</tr>
<tr>
<td>TcO2</td>
<td>transcutaneous oxygen tension</td>
</tr>
<tr>
<td>TISS</td>
<td>Therapeutic Intervention Scoring System</td>
</tr>
<tr>
<td>UTI</td>
<td>urinary tract infection</td>
</tr>
<tr>
<td>VAP</td>
<td>Ventilator-associated pneumonia</td>
</tr>
</tbody>
</table>
List of tables

Table (1) Major Categories and Examples of Outcome Prediction Models…………………………………………………… 33
Table (2) Measure to evaluate organ failure………………………………………………………………………………………… 47
Table (3) SOFA score……. 48
Table (4) Mortality Rate by SOFA score……………………………………………………………………………………………….. 49
Table (5) PSI score…….. 51
Table (6) Age groups of PRISM III score……………………………………………………………………………………………… 55
Table (7) Cardiovascular and Neurologic Vital Signs subscore………………………………………………………………….. 56
Table (8) Acid-Base and Blood Gases subscore……………………………………………………………………………………… 57
Table (9) Chemistry tests subscore……………………………………………………………………………………………………. 57
Table (10) Hematologic tests subscore……………………………………………………………………………………………….. 58
Table (11) PEMOD score…… 61
Table (12) PELOD score…… 63
Table (13) PIM2 score……….. 66
Table (14) TISS-76 score…… 67
Table (15) Distribution of patients according to age groups versus outcome………………………………………………….. 73
Table (16) Percentage of weight from median as a risk factor of mortality…………………………………………………….. 74
Table (17) Diagnoses of patients on admission and their risk of mortality……………………………………………………….. 74
Table (18) Admission diagnosis evaluated by PIM2 score……….. 75
Table (19) Scores done for the patients on admission…………………………………………………………………………………… 76
Table (20) following up patients on day 1, 3 & 7 using TISS and SOFA score………………………………………………………. 78
Table (21) Correlation between scores on admission…………………………………………………………………………………… 80
Table (22) Correlations between scores on follow up………………. 80
Table (23) Length of stay in relation to survival to discharge……… 81
Table (24) Correlations between scores on admission and length of stay……………………………………………………………. 82
Table (25) Correlations between scores on follow up and length of stay……………………………………………………………. 82
Table (26) Evaluation of the respiratory system on admission……… 82
Table (27) Respiratory support and chest care…………………….. 83
Table (28) Evaluation of ABG using different parameters’ ranges…. 84
Table (29) Evaluation of heart rate & SBP on admission using different ranges………………………………………………… 86
Table (30)	Evaluation of cardiovascular support	87
Table (31)	CNS evaluated with GCS & murray on admission	88
Table (32)	Evaluation of different parameters of GCS & murray	88
Table (33)	Different scores using GCS	89
Table (34)	Liver functions on admission	90
Table (35)	Liver functions in evaluating groups of patients	91
Table (36)	Different scores using liver functions in evaluating patients	91
Table (37)	Assessment of the kidney on admission	37
Table (38)	BUN and creatinine of groups of patients in different scores	93
Table (39)	Urine output on admission	94
Table (40)	Evaluation of patients on dialysis	94
Table (41)	Evaluation of hematological system using different score groupings	95
Table (42)	Hematological evaluation on admission	96
Table (43)	Evaluation of hematological support	96
Table (44)	Blood glucose and electrolytes of the patients on admission	97
Table (45)	Evaluation of patients using different parameters groups	97
Table (46)	Other factors affecting PICU outcome	98
List of figures

Figure (1) Quality and efficiency assessments using SMRs and SLOSRs ... 40
Figure (2) TISS on admission ROC curve................................. 77
Figure (3) SOFA score on admission ROC curve....................... 77
Figure (4) TISS day 1 ROC curve... 79
Figure (5) SOFA score on day 1 ROC curve............................. 79
Figure (5) Mean length of stay... 81
Figure (6) Length of stay versus survival to discharge............... 81
Figure (7) Other factors affecting mortality.............................. 98
Introduction

One pediatric population of special interest is critically ill children requiring intensive care services, since these children are at an increased risk of death (Lopez, 2006).

In recent decades, intensive care medicine has developed into a highly specialized discipline covering several fields of medicine. Whereas the total number of hospital beds in the United States decreased by 26.4% from the year 1985 to 2000, intensive care unit (ICU) beds increased by 26.2% during the same period, underlining the high demand for intensive care medicine (Halpern, 2004). Mortality rates in the ICU strongly depend on the severity of illness and the patient population analyzed, and 6.4% to 40% of critically ill patients were reported to die (Azoulay, 2003).

Although patho-physiological processes and new treatment approaches are extensively analyzed in laboratory and clinical research, comparably less data are available on the causes of death, short- and long-term outcomes of critically ill patients, and associated risk factors (Arabi, 2004).

Mostly, data on specific prognostic criteria for single diseases have been published (Bernieh, 2004). However, little is known of the exact causes of death and the impact of general risk factors that may uniformly complicate the course of critically ill patients irrespective of the underlying disease (Khouli, 2005). Knowledge of such general determinants of outcome in a critically ill patient population would not only help improve prognostic evaluation of ICU patients, but also indicate what therapy and research
should focus on to improve the short and long term outcomes of critically ill patients (Chang, 2006).

Scoring systems for use in ICU patients have been introduced and developed over the last 30 years. They allow an assessment of the severity of disease and provide an estimate of in-hospital mortality. This estimate is achieved by collating routinely measured data specific to a patient. Weighing is applied to each variable, and the sum of the weighed individual scores produces the severity score (Le Gall, 2005).

Scoring systems such as the Pediatric Risk of Mortality (PRISM) score and Pediatric Index of Mortality (PIM) are widely used in pediatric intensive care. These are third generation scoring systems that allow assessment of the severity of illness and mortality risk adjustment in heterogeneous groups of patients in an objective manner, enabling conversion of these numbers into a numerical mortality risk based on logistic regression analysis (van Keulen, 2005).
Aim of work:

This study was designed to:

- Describe the profile of patients admitted to PICU over one year in terms of underlying condition, system failure, as well as the supportive services provided.

- Apply commonly used scores for assessment of illness severity and determine their relation to patient outcome.

- To identify the combination of factors capable of predicting patient’s outcome.
Review of literature

Historical background:

In 1854, Florence Nightingale left for the Crimean War, where triage was used to separate seriously wounded soldiers from the less-seriously wounded. It was reported that Nightingale reduced mortality from 40% to 2% on the battlefield. Although this was not the case, her experiences during the war formed the foundation for her later discovery of the importance of sanitary conditions in hospitals, a critical component of intensive care (Manni, 2007).

In 1950, anesthesiologist Peter Safar established the concept of "Advanced Support of Life," keeping patients sedated and ventilated in an intensive care environment. Safar is considered to be the first practitioner of intensive-care medicine (Grossman et al, 2007).

Intensive care dates from the polio epidemic in Copenhagen in 1952. Doctors reduced the 90% mortality in patients receiving respiratory support with the cuirass ventilator to 40% by a combination of manual positive pressure ventilation provided by medical students and by caring for patients in a specific area of the hospital instead of across different wards. Having an attendant continuously at the bedside improved the quality of care but increased the costs and, in some cases, death was merely delayed (Bennette et al, 2009).

Bjørn Aage Ibsen established the first intensive care unit in Copenhagen in 1953 (Grossman et al, 2007). The first application of this
idea in the United States was by Dr. William Mosenthal, a surgeon at the Dartmouth-Hitchcock Medical Center. In the 1960s, the importance of cardiac arrhythmias as a source of morbidity and mortality in myocardial infarctions (heart attacks) was recognized. This led to the routine use of cardiac monitoring in ICUs, especially after heart attacks (Bennette et al, 2009).

Goran Haglund established the first pediatric intensive care unit, which he called a "pediatric emergency ward", in 1955 (Morton et al, 1997). Infants were first kept intubated for long periods in the early 1960s. Breathing tubes made out of polyvinyl chloride (PVC) allowed clinicians to avoid performing tracheostomy in more children who required prolonged mechanical ventilation (Duke et al, 2008).
Patterns of PICU admission:

Data from the Pediatric Intensive Care Audit network (PICANet), published in 2006, show that children under one year comprise 48% of admissions, 30% of which are for respiratory conditions. Overall, a third of the patients admitted have a primary cardiovascular diagnosis, 26% with respiratory diagnoses. Neurological and gastrointestinal diagnoses are also significant. Congenital disease and sepsis are more common in younger children, malignancy and trauma in older children (*PICANET, 2007*).

a) Cardiopulmonary arrest (CPA):

All patients with pediatric emergencies are susceptible to CPA because of physiological instability. Patients with respiratory and circulatory failure are particularly more susceptible because of the resultant tissue hypoxia and acidosis. For such patients cardiopulmonary resuscitation (CPR) is indicated, often followed by ICU admission for adequate stabilization and monitoring (*El-Naggar, 2009*).

b) Cardiovascular system:

Among the causes of infant mortality in the United States, congenital anomalies account for the largest diagnostic category. Structural heart disease leads the list of congenital malformations. More than 4 million children born each year in the United States, nearly 40,000 have some form of congenital heart disease (CHD). Approximately half of these children appear for therapeutic intervention within the first year of life, and the vast majority of them require critical care expertise. Patients with congenital or acquired heart disease compose a major diagnostic category for admissions
in large PICUs across the country, representing 30% to 40% or more of ICU admissions in many centers (*Arias et al, 2003*).

Dilated cardiomyopathy CMP is the most common form of CMP. Patients present to the intensive care unit with acute or chronic symptoms secondary to low cardiac output or congestive heart failure (CHF). Hypertrophic CMP may first present by an episode of sudden death (*Christopher, 2006*).

Shock is an acute, complex state of circulatory dysfunction that results in failure to deliver sufficient amounts of oxygen and other nutrients to meet tissue metabolic demands. If prolonged, it leads to multiple organ failure and death. That is why these patients should be managed in PICU (*De Bruin et al, 1992*).

Arrhythmias are commonly observed in critically ill pediatric patients. A given arrhythmia may represent the primary disease process, occur secondary to another disorder (e.g., recent cardiac surgery or myocarditis), or represent a complication of management. Close monitoring of these patients is a must (*Valsangiacomo et al, 2002*).

Hypertensive crises are designated as hypertensive urgencies or hypertensive emergencies. *Hypertensive urgencies* are characterized by markedly increased blood pressure but no evidence of end-organ damage. *Hypertensive emergencies* are defined as elevations of blood pressure resulting in hypertension-related end-organ damage. Organs most affected include the central nervous system (hypertensive encephalopathy, retinal vasculopathy-induced visual changes, cerebral infarction and hemorrhage); the cardiovascular system (congestive heart failure, myocardial ischemia,
aortic dissection); and the kidneys (proteinuria, pyuria, and hematuria with or without acute renal insufficiency). Hypertensive emergencies require immediate intervention to reduce the blood pressure to prevent progression of end-organ damage, whereas hypertensive urgencies are treated using an approach designed to control blood pressure over several hours. Both conditions should be managed in PICU (Cherney et al, 2002).

c) **Respiratory system:**

Respiratory distress or failure is the primary diagnosis in close to 50% of children admitted to PICUs and is a common cause of cardiopulmonary arrests in children. Pneumonia, acute bronchiolitis, and acute asthmatic attack are by far the most common causes of lung failure in pediatrics. Respiratory failure can result from central nervous system (CNS), neuromuscular, or muscular dysfunction (Department of health services, state of California, 2000).

Severe upper airway obstruction is also a common cause for PICU admission. Upper airway obstructions in children are much more commonly due to infections than any other cause. Of importance is the syndrome of acute respiratory distress (ARDS). It is diagnosed in 2.5-3% of children in the PICU and these children account for about 8% of total patient days and 33% of the deaths (Frankle, 2008).

d) **Neurologic system:**

Acute neurological deterioration may be a life-threatening event, with numerous causes and a few typical clinical presentations (coma, seizures, weakness, altered mental status). The clinician must act quickly to stabilize
the child with an evolving neurological illness to reverse the process and avoid further permanent neurological injury (*Hanhan et al, 2001*).

The most common causes of acute global neurological dysfunction in children are head trauma, hypoxia-ischemia, CNS infection, and encephalopathy from endogenous metabolites or exogenous toxins (*Frankle, 2008*).

Regardless of the cause, one of the most common clinical neurological conditions requiring PICU management is refractory status epilepticus. This case is considered an emergency because several respiratory (air way obstruction and apnea), cardiovascular (cardiac arrest) and metabolic complications (hypoglycemia, acid-base and electrolyte abnormalities) can be the immediate cause of death if not treated promptly (*Hanhan et al, 2001*).

Comatose patients should also ideally be transferred to an ICU where facilities for continuous monitoring and mechanical ventilator support are available if needed. And finally, an acute rise in intracranial pressure due to any cause and with impending or frank brain herniation is an emergency requiring PICU care for early prevention of secondary complications and management of cerebral ischemia and convulsions (*Shapiro et al, 1999*).

e) **Hematologic system:**

Common hematological conditions seen in pediatric critical care include severe acute anemia, hemolytic uremic syndrome, disseminated intra-vascular coagulopathy (usually occurring secondary to another severe critical illness) and several oncologic emergencies. These patients often