Prenatal Detection, Intrauterine Vesico-amniotic Shunting and Postnatal Follow up of Isolated Lower Urinary Tract Obstruction Cases

Thesis
Submitted for Fulfillment of MD Degree in Pediatrics

By
Sarah Samir El Tatawy

Supervised by
Prof. Dr. Iman Seoud
Professor of Pediatrics and Former Head of the Pediatrics Department
Faculty of Medicine, Cairo University

Prof. Dr. Iman Iskandar
Professor of Pediatrics
Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Momtaz
Professor of Obstetrics and Gynecology
Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2012
Acknowledgment

I would firstly like to express my deepest gratitude to my dear professor and guardian, Prof Dr. Iman Seoud, for her help and guidance, not just on this paper, but throughout my whole career and life. I owe her my utmost love and respect.

I would like to thank Prof Dr. Mohamed Momtaz for giving me the opportunity to work in the perinatal field and for teaching me new skills and educating me about the world of fetal medicine. His wisdom and encouragement were fundamental to the completion of this work.

I would like to send my most sincere appreciation and admiration to Prof Dr. Iman Iskandar for helping and guiding me through all the details of this work. Her constructive suggestions and crucial advice has been an invaluable asset to this work.

I would also like to extend my regards to everyone at the Fetal Medicine Department at Kasr Al Aini for being helpful and cooperative with this work and throughout the year I spent among them.

As always, my family has been a pillar of support for me during this endeavor. My love goes to my father for helping me edit this paper and to my brothers for assisting me with the technical aspects of the presentation, and to my husband for his emotional support.

Last but most important, I am eternally grateful to Prof Dr. Nadia Badrawi, my mother and mentor, who has always been the wind beneath my sails, continuously encouraging me, and pushing me to achieve more, and rise to higher standards. I am who I am today because of her.
Contents

Abstract ... 1
Introduction ... 3
 Rationale and Background ... 4
 Objectives of the Study ... 7
Review of the Literature ... 8
 Development and Embryology of the fetal Kidneys and Urinary tract 9
 Development of the fetal kidney and Urinary Tract ... 10
 Embryology of the male urethra ... 11
 Anatomy of the Urinary tract ... 23
 Types of Congenital Anomalies of the Urethra ... 34
 Types of Congenital Anomalies of the Urethra ... 35
 Epidemiology and Etiology of the Congenital Lower Urinary Tract Anomalies 46
 Incidence and Prevalence ... 47
 Genetic and Environmental Factors Associated with Lower Urinary Tract Obstruction .. 51
 Pathophysiology of LUTO .. 55
 Prenatal Diagnosis of Lower Urinary Tract Obstruction ... 59
 Radiological Evaluation .. 60
 Fetal Urine, Fetal Serum and Fetal Renal Biopsy .. 72
Treatment and Outcomes of Congenital Lower Urinary Tract Obstruction

- Treatment of Congenital Urinary Tract Obstruction ... 75
- Outcomes of Lower Urinary Tract Obstruction ... 88

Patients and Methods

- .. 91

Results

- .. 104

Discussion

- .. 157

Summary

- .. 173

Conclusions and Recommendations

- .. 176

Appendices

- .. 179

References

- .. 193

Arabic Summary

- ملخص باللغة العربية .. 217
List of Figures

Figure 1: Induction of Nephrons .. 14
Figure 2: Ureteric and Metanephric Bud Derivatives 15
Figure 3: Developing Kidneys .. 16
Figure 4: Embryologic development of the male genitourinary tract. .. 17
Figure 5: Embryologic development of the male genitourinary tract. .. 18
Figure 6: Embryologic development of the male genitourinary tract. .. 19
Figure 7: Embryologic development of the male genitourinary tract. Median cleavage of the urethral plate occurs 20
Figure 8: Compartmentalization of cloaca .. 21
Figure 9: Changing anatomical relationships of ureters and mesonephric duct derivatives .. 22
Figure 10: Sagittal section through the pelvis of a newly born male child .. 28
Figure 11: Sagittal section through the pelvis of a newly born female child ... 28
Figure 12: Male Urethra ... 30
Figure 13: Normal male urethral anatomy 31
Figure 14: Normal urethral anatomy .. 32
Figure 15: Percutaneous insertion of vesico-amniotic shunt 82
Figure 16: Procedure for fetal urine sampling 138
Figure 17: Fetus after failure of vesico-amniotic shunt 140
Figure 18: ‘keyhole’ sign ... 142
Figure 19: Vesico-amniotic shunt insertion 143
Figure 20: Properly placed shunt ... 145
Figure 21: Improvement of condition after shunt placement .. 146
Figure 22: Hydronephrosis... 148
Figure 23: Thick bladder wall .. 149
Figure 24: Vesico-amniotic shunt placement 151
Figure 25: Displacement of the shunt 152
List of Tables

Table 1: The Mean Maternal Age at Diagnosis..........................105
Table 2: Significance of maternal history in correlation to LUTO
..106
Table 3: Gestational Age at the Time of Diagnosis..................106
Table 4: Comparison between AFI in Normal Vs LUTO Patients
..107
Table 5: Comparison of Fetal Bladder Size in LUTO Vs Normal
Patients...110
Table 6: Fetal Bladder Wall Thickness in the LUTO patients.....113
Table 7: Comparison between Kidney Lengths in LUTO Vs Normal
Patients...115
Table 8: Comparison between Kidney Transverse Diameters in
LUTO Vs Normal Patients ...118
Table 9: Neonatal outcome of interventional and conservative
groups..132
Table 10: Comparison of Perinatal Outcomes between
Conservative and Intervention Groups ..135
List of Graphs

Graph 1: Comparison of AFI in Normal Vs. LUTO Patients Per Gestational Age... 108
Graph 2: Follow Up of AFI by Serial Ultrasounds.......................... 109
Graph 3: Comparison of Fetal Bladder Size in Normal Vs LUTO Patients per Gestational Age.. 111
Graph 4: Follow up of Fetal Bladder Sagittal Length on Serial Ultrasounds ... 112
Graph 5: Fetal Bladder Wall Thickness in LUTO patients.............. 113
Graph 6: Follow Up of Fetal Bladder Wall Thickness by Serial Ultrasounds ... 114
Graph 7: Comparison between Fetal Kidney Lengths in LUTO Vs Normal Patients .. 116
Graph 8: Follow Up of Fetal Kidney Lengths by Serial Ultrasounds ... 117
Graph 9: Comparison between Fetal Kidney Transverse Diameters in LUTO Vs Normal Patients 119
Graph 10: Follow Up of Fetal Kidney Transverse Diameters by Serial Ultrasounds .. 120
Graph 11: Fetal Urinary Sodium Levels ... 121
Graph 12: Fetal Urinary Calcium Levels .. 122
Graph 13: Fetal Urinary B2 Microglobulin Levels 123
Graph 14: Fetal Urinary Chloride Levels .. 124
Graph 15: Fetal Urinary Creatinine Levels 125
Graph 16: Fetal Urinary Potassium Levels 126
Graph 17: Vesico-amniotic shunt placement 127
Graph 18: Reasons for not placing the shunt 128
Graph 19: Perinatal outcome of the Interventional group 129
Graph 20: Failure of vesico-amniotic shunts.......................... 130
Graph 21: Perinatal outcome of the conservative group 131
Graph 22: Neonatal Outcome of the Interventional Group 133
Graph 23: Neonatal Outcome of the conservative group 134
List of Appendices

Appendix 1: The amniotic fluid index in normal human pregnancy ... 180
Appendix 2: Fetal Bladder Wall Thickness in Normal Vs Obstructed Patients ... 181
Appendix 3: Growth of Longitudinal Length of the Kidney with Gestational Age .. 182
Appendix 4: Growth of Transverse Diameter of the Kidney with Gestational Age .. 183
Appendix 5: Urinary Components and Their Usefulness in Predicting Renal Dysplasia ... 184
Appendix 6: Normal Values of Fetal Urine ... 185
Appendix 7: Table of Results .. 186
List of Abbreviations

ACE Angiotensin Converting Enzyme
AGT Angiotensinogen
AGTr1a/b Angiotensin II receptor, type 1a/b
AGTr2 Angiotensin II receptor, type 2
AFI Amniotic Fluid Index
ARPKD Autosomal Recessive Polycystic Kidney Disease
AUD Anterior Urethral Diverticulum
AUV Anterior Urethral Valves
CAKUT Congenital Anomalies of the Kidney and Urinary Tract
CI Confidence Interval
COPUM Congenital Obstructive Posterior Urethral Membrane
CUF Congenital Urethroperineal Fistula
CUTA Congenital Urinary Tract Abnormalities
FBSL Fetal Bladder Sagittal Length
FDA Food and Drug Administration
HDE Humanitarian Device Exemption
ICD10 International Classification of Diseases version 10
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTO</td>
<td>Lower Urinary Tract Obstruction</td>
</tr>
<tr>
<td>MCDK</td>
<td>Multicystic Dysplastic Kidney</td>
</tr>
<tr>
<td>MDC</td>
<td>Mullerian Duct Cyst</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>PBS</td>
<td>Prune-Belly Syndrome</td>
</tr>
<tr>
<td>PUV</td>
<td>Posterior Urethral Valve</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin-Angiotensin System</td>
</tr>
<tr>
<td>TOP</td>
<td>Termination of Pregnancy</td>
</tr>
<tr>
<td>UPJ</td>
<td>Ureteropelvic Junction</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasonography</td>
</tr>
<tr>
<td>UTO</td>
<td>Urinary Tract Obstruction</td>
</tr>
<tr>
<td>UVJ</td>
<td>Ureterovesical Junction</td>
</tr>
<tr>
<td>VACTERL</td>
<td>Vertebral anomalies, Anal atresia, Cardiovascular anomalies, Tracheoesophageal fistula, Renal anomalies, and Limb abnormalities</td>
</tr>
<tr>
<td>VCUG</td>
<td>Voiding Cystourethrogram</td>
</tr>
<tr>
<td>VUR</td>
<td>Vesicoureteral Reflux</td>
</tr>
<tr>
<td>WMCAR</td>
<td>West Midlands Congenital Anomaly Register</td>
</tr>
</tbody>
</table>
Abstract
Prenatal Detection, Intrauterine Vesico-amniotic Shunting and Postnatal Follow up of Isolated Lower Urinary Tract Obstruction Cases

Objectives: The objectives of the study were to determine whether intrauterine vesico-amniotic shunting for fetal bladder outflow obstruction, versus a conservative non-interventional approach improves prenatal and postnatal mortality, morbidity, and renal functions of isolated lower urinary tract obstruction cases. We aimed to find a prognostic index for cases of fetal lower urinary tract obstruction and to determine the safety and efficacy of the shunting procedure.

Patients and Methods: The study included 20 cases of lower urinary tract obstruction (LUTO). Initial ultrasonography was done to all our cases upon detection of the lower urinary tract obstruction and a follow up ultrasounds were performed on 9 cases. The most important indicator to predict renal function was fetal bladder size. Bladder wall thickness, amniotic fluid index and the size of the kidney were of lesser value in the early detection of LUTO. Fetal urine analytes including Sodium, Potassium, Chloride, Calcium, Creatinine and B2 microglobulin were analyzed in 16 cases. In our study of 20 LUTO patients, 6 fell into the intervention group and 14 into the conservative group.

Results: The perinatal and neonatal outcomes of the interventional group were 33.3% terminations of pregnancy, 33.3% miscarriage, 16.6% neonatal death and 16.6% alive at 28 days. The conservative group results included 36% terminations of pregnancy, 7% miscarriage, 14% neonatal deaths, 7% alive at 28 days and 36% dropouts.

Conclusion: Fetal urine biochemical analysis results were not in accordance with the ultrasonographic results nor were they useful in predicting severity of disease and neonatal outcome. Fetal bladder sagittal length was the most important sign in early diagnosis of LUTO. Vesico-amniotic shunting did not alleviate the LUTO condition, nor did it affect neonatal mortality or morbidity.

Keywords: Lower urinary tract obstruction (LUTO), vesico-amniotic shunt, fetal urine analysis, prenatal diagnoses of LUTO, prenatal management of LUTO.
Introduction
Introduction

Rationale and Background

Fetal congenital anomalies, both treatable and untreatable occur all over the world. This study focuses on urogenital anomalies, specifically isolated fetal lower obstructive uropathies. Fetal lower urinary tract obstruction (LUTO) affects 2.2 per 10,000 births. It is a consequence of a range of pathological processes, most commonly posterior urethral valves (PUV) (64%) or urethral atresia (39%). It is a condition of high mortality and morbidity associated with progressive renal dysfunction and oligohydramnios, and hence fetal pulmonary hypoplasia (Lissauer et al, 2007). Renal function plays a significant role in maintaining fetal metabolic equilibrium. The kidneys contribute to amniotic fluid production, which is needed to stimulate the intrauterine fetal respiratory activity. Intrauterine breathing is essential for lung development; therefore, oligohydramnios is synonymous with pulmonary hypoplasia, which in turn usually leads to neonatal detriment.

There haven’t been any proper statistical data in Egypt as to the incidence of fetal lower urinary tract obstructions, however in clinical practice; one does see a number of neonates born with various obstructive uropathies. The goal of this study is to evaluate whether fetal intervention will improve the prognosis of these cases born with isolated obstructive uropathies.

Trials of intervention, including fetal surgery, fetal cystoscopy with endoscopic surgery, and percutaneous vesico-amniotic
Introduction

Shunting has been performed. A clinical trial covering fetal obstructive uropathy concluded that early bladder drainage before the 24th week of gestation by shunting enables delivery of newborns with a good perinatal outcome, and without pulmonary hypoplasia. This method of therapy limits renal damage and allows time for normal development of the fetal lungs (Szaflik et al, 1998).

Recently it has become possible to decompress the obstruction in-utero via percutaneous vesico-amniotic shunting with relatively good results. A study done in the University of Pennsylvania, school of Medicine, on male children who underwent prenatal bladder shunting, showed that they were neurodevelopmentally normal. Although one third of the surviving babies required dialysis and transplantation, the majority has acceptable renal and bladder function and report satisfactory quality of life (Biard et al, 2005.) This is due to the fact that the intervention happened in the appropriate time to decompress the bladder and ureters. Another study, ongoing until September 2013, is the PLUTO study. In this trial, two groups were randomized; one underwent vesico-amniotic shunting, while the other was conservatively managed. (Kilby et al and Pluto Collaborative study group et al, 2007).

Although all of the above mentioned studies have shown positive results for vesico-amniotic shunting, some show equivocal results. A clinical trial done in Ain Shams University, Egypt compared two groups with Posterior Urethral Valves (PUV); one
group underwent antenatal vesico-amniotic shunting while the other underwent post natal surgical correction of the PUV. Their study concluded that antenatal vesico-amniotic shunt placement makes no difference to the outcome and long-term results of patients with PUV and that primary valve ablation is the keystone of treatment for patients with PUV (Salam, 2006). Another study done in the University of Toronto showed that although vesico-amniotic shunting is effective in reversing oligohydramnios, its ability to achieve sustainable good renal function in infancy is variable (McLorie et al, 2001.)

The hypothesis of this study relies on the fact that fetal lower urinary tract obstruction causes backpressure on the bladder, ureters and kidneys with possible progression to hydroureter and hydronephrosis. Therefore, hypothetically bypassing the obstruction via vesico-amniotic shunting should decrease the back pressure; thus preserving the physiological and functional states of those organs.
Introduction

Objectives of the Study

1. To determine whether intrauterine vesico-amniotic shunting for fetal bladder outflow obstruction, versus a conservative non-interventional approach improves prenatal and postnatal mortality, morbidity, and renal functions of isolated lower urinary tract obstruction cases.

2. To find a prognostic index for cases of fetal lower urinary tract obstruction and to determine the safety and efficacy of the shunting procedure.
Review of the Literature