SENSITIVITY IMPROVEMENT OF MICRO-DIAPHRAGM DEFLECTION IN OPTICAL MEMS SENSOR AS APPLIED TO PULSE PRESSURE DETECTION

By
Eng. AbdelHaleim Hasan Elhag Osman AbdAllah
B.Sc. in Biomedical Engineering 2007
Sudan University of Science and Technology

A Thesis Submitted to
The Faculty of Engineering, Cairo University

In Partial Fulfillment of Requirement for the degree of
(MASTER OF SCIENCE)

In
(SYSTEMS AND BIOMEDICAL ENGINEERING)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2012
SENSITIVITY IMPROVEMENT OF MICRO-DIAPHRAGM DEFLECTION IN OPTICAL MEMS SENSOR AS APPLIED TO PULSE PRESSURE DETECTION

By
Eng. AbdelHaleim Hasan Elhag Osman AbdAllah
B.Sc. in Biomedical Engineering 2007
Sudan University of Science and Technology

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of Requirement for the degree of
(MASTER OF SCIENCE)
In
(SYSTEMS AND BIOMEDICAL ENGINEERING)

Under supervision of
Prof. Ass. Dr. Amr Abdurrahman Sharawi
Systems and Biomedical Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2012
SENSITIVITY IMPROVEMENT OF MICRO-DIAPHRAGM DEFLECTION IN OPTICAL MEMS SENSOR AS APPLIED TO PULSE PRESSURE DETECTION

By

Eng. AbdelHaleim Hasan Elhag Osman AbdAllah
B.Sc. in Biomedical Engineering 2007
Sudan University of Science and Technology

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of Requirement for the degree of
(MASTER OF SCIENCE)
In
(SYSTEMS AND BIOMEDICAL ENGINEERING)

Approved by the
Examining Committee:

Prof. Dr. Fatima Mahmuod Alhifnawi
Prof. Dr. Yasser Mustafa Kadah
Prof. Ass. Dr. Amr Abdurrahman Sharawi, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
February 2012
Engineer: AbdelHaleim Hassan Elhag Osman AbdAllah
Date of Birth: 4/6/1969
Nationality: Sudanese
E-mail: ahh.elhag@gmail.com
Phone: 00201142929945
Address: Sudan-Omdurman-Karary University
Registration Date: 13/12/2009
Awarding Date: / /
Degree: Master
Department: Systems and Biomedical Engineering

Supervisors: Prof. Ass. Dr. Amr Abdurrahman Sharawi
Examiners: Prof. Dr. Fatima Mahmoud Alhifnawi from Ministry of State for Scientific Research-National Authority for Remote Sensing and Space Sciences
Prof. Dr. Yasser Mustafa Kadah
Prof. Ass. Dr. Amr Abdurrahman Sharawi, Thesis Main Advisor

Title of Thesis: Sensitivity Improvement of Micro-Diaphragm Deflection in Optical MEMS Sensor As Applied To Pulse Pressure Detection

Key Words: Microdiaphragm corrugation technique, Corrugation factors, Optical MEMS sensor, Pressure pulse, Deflection sensitivity, von Mises stress

Summary:

In this thesis, sensitivity of micro-diaphragm deflection in optical Micro Electro Mechanical System (MEMS) sensor as applied to pulse pressure detection was improved. Thus was introduced to determine the safety of the person measured pulse of cardiovascular disease and atherosclerosis. The deflection sensitivity improvement was simulated using Finite Element Analysis in ANSYS software. Corrugation technique for periphery-clamped silicon nitride microdiaphragm based on the variation of the diaphragm thickness (t_d) and some corrugation factors such as the corrugation angle (β) and the corrugation depth (h_c) was implemented to reduce bending and tensile stresses which limit the microdiaphragm deflection sensitivity and which was depicted by von Mises stress. Therefore, the application of corrugation offers the possibility to control mechanical deflection sensitivity and is often an easier way as compared to the approach of the film deposition process control.
ACKNOWLEDGEMENTS

First of all I would like to thank God for his grace and blessing to successfully complete my research, and without his support, the research completion could never ever accomplished with this easy way.

I would like to express my deep appreciation to my supervisor Prof. Ass. Dr. Amr Abdurrahman Sharawi from the department of Systems and Biomedical Engineering at Cairo University, for serving as my advisor. It is impossible for me to finish my thesis work without his patience, guidance and support. As a mentor and a father, he continually and convincingly conveyed a spirit of adventure and an excitement in regard to research during the past two years. With his encouragement, I will continue to work with confidence in my career.

I also would like to sincerely thank Prof. Dr. Fatima Mahmoud Alhifnawi from Ministry of State for Scientific Research-National Authority for Remote Sensing and Space Sciences and Prof. Dr. Yasser Mustafa Kadah from the department of Systems and Biomedical Engineering at Cairo University for serving on my committee and for their encouragements and valuable suggestions to improve the quality of the work presented here.

I would like to thank the academic and professional staff at the department of Systems and Biomedical Engineering at Cairo University, for providing their support in various aspects.

Finally, and most importantly I would like to thank my wife and kids who have been emotional anchors throughout my entire life, for their belief in my ability to succeed, for their unlimited encouragements, and for the love and support. I dedicate this thesis for them and my parents’ spirits.
ABSTRACT

Cardiovascular diseases are one of the leading causes of death. Globally, they underlie the death of one third of the world’s population. These diseases can be divided into coronary, cerebral or peripheral artery diseases. The main cause of cardiovascular diseases is atherosclerosis which makes arteries less elastic (called “hardening of the arteries” or “arterial stiffness”).

To obtain parameters such as distension and stiffness of the arteries, the movement of the arteries walls during pulsation must be accurately detected.

An ideal site for the measurement is provided by the radial artery in the wrist, since it is located near the skin surface, and the wrist serves as a good attachment for the measuring device.

The optical Micro Electro Mechanical System (MEMS) pressure sensor has shown its potential in the diagnosis of arterial stiffness that can be conducted by detecting the pulse pressure in the radial artery. An optical sensor typically utilizes a sensor head that consists of a diaphragm and optical fiber which in turn, converts the light rays to electric signal.

The diaphragm is one of the most important parts in the optical sensor because the sensitivity of the sensor is highly dependent on its performance. Therefore, the aim of this work is to improve the deflection sensitivity of the diaphragm.

As we know, a periphery-clamped circular diaphragm has the disadvantage of possible high stress in its deposition process, which reduces the diaphragm sensitivity. Therefore in addition to the assessment of fabrication processes for low stress membrane film (micro-diaphragm), the corrugation technique is an
effective way to reduce this high stress in the diaphragm and to optimize its
deflection sensitivity.

The mechanical deflection of the proposed \textit{corrugated} silicon nitride
\((\text{Si}_3\text{N}_4)\) diaphragm is analytically calculated based on the variation of the
diaphragm thickness \((t_d)\) and some \textit{corrugation} factors such as the \textit{corrugation}
angle \((\beta)\) and \textit{corrugation} depth \((h_c)\) showing agreement with ANSYS software
simulation results in static response of 1.27 \(\mu\)m maximum deflection with an
applied pressure of 300 mmHg in the case of the \textit{corrugated} micro-diaphragm,
compared to a 0.32 \(\mu\)m maximum deflection in the case of the \textit{flat} micro-
diaphragm modeled before, and for the same applied pressure, maximum
deflection sensitivity of \(4.23 \times 10^{-3}\) \(\mu\)m/mmHg for the \textit{corrugated} micro-
diaphragm compared to \(1.07 \times 10^{-3}\) \(\mu\)m/mmHg for the \textit{flat}, and the reduction of
micro-diaphragm bending and initial tensile stresses exhibited by maximum
equivalent stress (von Mises stress) of 159.99 MPa for the \textit{corrugated}
compared to 175.9 MPa for the \textit{flat}.

To prove the feasibility of the model and its solution, two cases of normal
and atherosclerotic were chosen for dynamic responses, the simulation results
show a maximum deflection of 0.54 \(\mu\)m and maximum von Mises stress of
66.124 MPa with normal 117 mmHg pressure, as it is a maximum value for
periodic pulse applied to the diaphragm, compared to a maximum deflection of
0.63 \(\mu\)m and maximum von Mises stress of 76.692 MPa with atherosclerotic
137 mmHg pressure, as it is a maximum value for periodic pulse applied to the
diaphragm, this response was not studied in any previous work.

At a particular diaphragm radius, the deflection and the equivalent stress
increase as the corrugation angle and corrugation depth increases and
decreases, respectively. The results also indicate that the thinner the
diaphragm thickness, the higher the deflection. All these concepts agree well
with the deflection sensitivity improvement objectives.

The equivalent stress simulation shows that the resulting stresses are within
the safe range of yield stress, thus avoiding material failure. Obviously, the
application of corrugation offers the possibility to control mechanical
deflection sensitivity and is often an easier way as compared to the
approach of the film deposition process control.
Table of Contents

Acknowledgements ... iv
Abstract ... v
Table of Contents .. viii
List of Tables .. xi
List of Figures ... xii
List of Abbreviations .. xv
List of Symbols ... xvii

Chapter 1 .. 1

Introduction .. 1

1.1 Motivation to this work ... 1

1.2 Cardiovascular disease definition ... 1

1.2.1 Risk factors for cardiovascular diseases ... 7

1.2.1.1 Symptoms of heart attacks and strokes ... 8

1.2.1.2 Symptoms of rheumatic heart disease .. 9

1.2.2 Cardiovascular diseases as a development issue in low- and middle-income countries .. 9

1.3 Atherosclerosis ... 10

1.4 Arterial Stiffness .. 11

1.5 Contribution of the thesis ... 14

1.6 Organization of the thesis ... 16

Chapter 2 .. 18

Current Blood Pressure Measurement Methods ... 18

2.1 Historical background of pressure measurement tools .. 18

2.1.1 Magnetic Resonance Imaging (MRI) ... 19

2.1.2 Computed Tomography (CT) .. 20

2.1.3 Angiography ... 22
2.1.4 Intravascular Ultrasound ...23
2.1.5 Biomedical Pressure Sensors ...23
2.2 MEMS Based Pressure Sensor ...27
 2.2.1 Comparison of Pressure Sensors ...28
 2.2.1.1 Piezoresistive Sensor ...28
 2.2.1.2 Capacitive Sensor ...29
 2.2.1.3 Optical Sensor ..30
 2.2.1.3.1 Polarization-modulated pressure sensor31
 2.2.1.3.2 Wavelength-modulated pressure sensor32
 2.2.1.3.3 Intensity-based FOPS ..33
 2.2.1.3.4 Interferometry based FOPS ...34
 2.3 Fiber optic Fabry-Perot interferometer sensors ...35
 2.3.1 Extrinsic Fabry-Perot Interferometer Sensor ...36
 2.3.2 Intrinsic Fabry-Perot Interferometer Sensor ...37
 2.4 The Principle of Operation of an Optical MEMS Sensor for Human Pulse Pressure Detection ...38

CHAPTER 3 ...41
THE DEVELOPMENT OF OPTICAL MICRO-DIAPHRAGM41
 3.1 Material Selection ..41
 3.2 Design Specification ...44
 3.3 Diaphragm Mechanical Analysis ..46
 3.3.1 Flat Diaphragm Deflection under Applied Pressure46
 3.3.2 Pressure Sensitivity ...49
 3.3.3 Stress Analysis ...49

CHAPTER 4 ...52
THE MODELING OF CORRUGATED MICRO-DIAPHRAGM EXCITED BY PRESSURE PULSE TO REDUCE THE DIAPHRAGM DEPOSITION STRESSES...52
 4.1 Built-in stress reduction technique ...54
 4.2 Displacement Enhancement Method ...55
 4.3 Analysis of various types for diaphragm deflection56
4.3.1 Small Deflection Diaphragm Analysis ...56
4.3.2 Medium Deflection Diaphragm Analysis58
4.3.3 Membrane Analysis ...59
4.3.4 Corrugated Diaphragm Analysis ...60
4.3.5 Von Mises Stress ..60
4.4 Corrugated Diaphragm Design ...62
 4.4.1 Static and Dynamic Response for the Corrugated Diaphragm65
 4.4.1.1 Static Response ..65
 4.4.1.2 Dynamic Response ..80
CHAPTER 5 ...85
 RESULTS AND DISCUSSION ..85
 5.1 Simulations and Results Analysis for Corrugated Diaphragm
 Deformation ..85
 5.2 Effect of Corrugation Depth ..92
 5.3 Stress Distribution around the Corrugations94
CHAPTER 6 ...97
 CONCLUSION AND SUGGESTED FUTURE WORK97
 6.1 Thesis conclusions ..98
 6.2 Recommendations for Future Work ...101
REFERENCES ...102
LIST OF TABLES

Table 2.1: Classifications of Biomedical Sensors According to Their Interface with the Biologic Host ...25
Table 3.1: Material Properties of Silicon Nitride and Polyimide..............43
Table 4.1: Microdiaphragm corrugation parameters..................................63
Table 4.2: One Pulse Pressure Values for Normal and Atherosclerotic Patient ...80
LIST OF FIGURES

Figure 1.1: Normal vs. Atherosclerotic arteries ...2
Figure 1.2: Clotting obstruct the flow of blood to the heart muscle2
Figure 1.3: The clot or piece of atherosclerotic plaque breaks away from another area of the body and lodges within the vasculature of the brain3
Figure 1.4: Atherosclerosis in leg causes a decrease in blood flow4
Figure 1.5: Gross pathology of rheumatic heart disease. Left ventricle has been cut open to display characteristic severe thickening of mitral valve4
Figure 1.6: Abnormalities of the heart's structure and function caused by abnormal or disordered heart development before birth5
Figure 1.7: Blood clot formation stages ...6
Figure 1.8: Blood flow prevention by blood clot or plaque7
Figure 1.9: Atherosclerosis stages in the artery ...11
Figure 1.10: The compliant vessel vs. noncompliant vessel13
Figure 2.1: Different diagnostic methods for detection of plaques. Counterclockwise: MRI, CT scan, angiography, IVUS [8]19
Figure 2.2: Illustration of an EFPI fiber optic sensor [27]36
Figure 2.3: Proposed design of the optical MEMS sensor [5]39
Figure 3.1: The 3D cross-section schematic of sensor. The sensor consists of a Si3N4 cap and a fiber optic cable. The three layers of the cap form the 180µm diameter, 1µm thick diaphragm, a Fabry-Perot cavity approximately 50 µm in length [40] ..45
Figure 3.2: Structure model for the diaphragm [27]......................................47
Figure 4.1: The corrugated microdiaphragm in optical MEMS sensor55
Figure 4.2: Proposed profile of corrugated microdiaphragm62
Figure 4.3: The relationship among corrugation angle, depth and deformation at thickness 4 µm ..66
Figure 4.4: The relationship among corrugation angle, depth and deformation at thickness 3 µm ..67
Figure 4.5: The relationship among corrugation angle, depth and deformation at thickness 2 µm ..67
Figure 4.6: The relationship among corrugation angle, depth and deformation at thickness 1 µm ..68
Figure 4.7: The relationship among corrugation angle, thickness and Deflection Sensitivity at corrugation depth of 7µm70
Figure 4.8: The relationship among corrugation angle, thickness and Deflection Sensitivity at corrugation depth of 5µm71
Figure 4.9: The relationship among corrugation angle, thickness and
Deflection Sensitivity at corrugation depth of 3µm

Figure 4.10: The relationship among corrugation angle, thickness and Deflection Sensitivity at corrugation depth of 1µm

Figure 4.11: The relationship among corrugation angle, depth and equivalent stress at thickness 4µm

Figure 4.12: The relationship among corrugation angle, depth and equivalent stress at thickness 3µm

Figure 4.13: The relationship among corrugation angle, depth and equivalent stress at thickness 2µm

Figure 4.14: The relationship among corrugation angle, depth and equivalent stress at thickness 1µm

Figure 4.15: The relationship among corrugation angle, depth and Deflection Sensitivity at (a) diaphragm thickness of 4µm (b) diaphragm thickness of 3µm (c) diaphragm thickness of 2µm (d) diaphragm thickness of 1µm

Figure 4.16: Pulse Pressure Waveform (Time vs. Pressure) for (a) Normal and (b) Atherosclerotic

Figure 4.17: Microdiaphragm Deformation for (a) Normal and (b) Atherosclerotic

Figure 4.18: Microdiaphragm von Mises Stress for (a) Normal and (b) Atherosclerotic

Figure 4.19: Microdiaphragm Deflection Sensitivity for (a) Normal and (b) Atherosclerotic

Figure 5.1: Contour plot of deformed diaphragm. Deformation is maximum at the middle part of the corrugated microdiaphragm

Figure 5.2: Contour plot of deformed diaphragm. Deformation is maximum at the middle part of the corrugated microdiaphragm according to maximum peak of the pulse pressure in healthy case

Figure 5.3: Contour plot of deformed diaphragm. Deformation is maximum at the middle part of the corrugated microdiaphragm according to maximum peak of the pulse pressure in atherosclerotic case

Figure 5.4: Linear Curve for pressure vs. Deformation in Normal Case

Figure 5.5: Linear Curve for pressure vs. Deformation in Atherosclerotic Case

Figure 5.6: von Mises Stress Distribution in Flat Microdiaphragm

Figure 5.7: von Mises Stress Distribution in corrugated Microdiaphragm

Figure 5.8: Linear Curve for pressure vs. von Mises Stress in Normal Case

Figure 5.9: Linear Curve for pressure vs. von Mises Stress in Atherosclerotic Case

Figure 5.10: Linear Curve for Total deformation vs. von Mises Stress in Normal Case
Figure 5.11: Linear Curve for Total deformation vs. von Mises Stress in Atherosclerotic Case……………………………………………………………………92
Figure 5.12: The effect of corrugation depth on deformation sensitivity......93
Figure 5.13: The maximum von Mises stress of 35.41MPa concentrated at the edge of the corrugated microdiaphragm with hc = 7μm..94
Figure 5.14: The maximum von Mises stress of 39.041MPa concentrated at the edge of the corrugated microdiaphragm with hc = 5μm95
Figure 5.15: The maximum von Mises stress of 47.081MPa concentrated at the edge of the corrugated microdiaphragm with hc = 3μm95
Figure 5.16: The maximum von Mises stress of 99.689MPa concentrated at the edge of the corrugated microdiaphragm with hc = 1μm96
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Si3N4</td>
<td>Silicon Nitride</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Modeling</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro Electro Mechanical Systems</td>
</tr>
<tr>
<td>BioMEMS</td>
<td>Biological Micro Electro Mechanical Systems</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>CVDs</td>
<td>Cardiovascular Diseases</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>TNN</td>
<td>Thresholding Neural Network</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>ROIs</td>
<td>Regions of Interest</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Diagnosing</td>
</tr>
<tr>
<td>CM</td>
<td>Contrast Media</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial Infarction</td>
</tr>
<tr>
<td>IVUS</td>
<td>Intravascular Ultrasound</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>FOPS</td>
<td>Fiber Optic Pressure Sensor</td>
</tr>
<tr>
<td>EFPI</td>
<td>Extrinsic Fabry-Perot Interferometer</td>
</tr>
<tr>
<td>IFPI</td>
<td>Intrinsic Fabry-Perot Interferometer</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>PECVD</td>
<td>Plasma Enhanced Chemical Vapor Deposition</td>
</tr>
<tr>
<td>DRIE</td>
<td>Deep Reactive Ion Etching</td>
</tr>
<tr>
<td>Bpm</td>
<td>beat per minute</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Microdiaphragm deflection under applied pressure</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>t_d</td>
<td>Diaphragm thickness</td>
</tr>
<tr>
<td>R</td>
<td>Effective diaphragm radius</td>
</tr>
<tr>
<td>E</td>
<td>Young’s Modulus</td>
</tr>
<tr>
<td>r</td>
<td>Radial distance</td>
</tr>
<tr>
<td>v</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>y_c</td>
<td>Maximum deflection of a microdiaphragm</td>
</tr>
<tr>
<td>D</td>
<td>Flexural rigidity of a microdiaphragm</td>
</tr>
<tr>
<td>Y_c</td>
<td>Pressure sensitivity</td>
</tr>
<tr>
<td>σ_r, σ_t</td>
<td>Radial and tangential stresses</td>
</tr>
<tr>
<td>σ_y</td>
<td>Yield stress</td>
</tr>
<tr>
<td>σ_{vm}</td>
<td>Von Mises stress</td>
</tr>
<tr>
<td>J_2</td>
<td>Second stress invariant</td>
</tr>
<tr>
<td>k</td>
<td>Critical value of von Mises stress</td>
</tr>
<tr>
<td>b_c</td>
<td>Top corrugation width</td>
</tr>
<tr>
<td>λ</td>
<td>Spatial period of corrugation</td>
</tr>
<tr>
<td>w_c</td>
<td>Bottom corrugation width</td>
</tr>
<tr>
<td>h_c</td>
<td>Corrugation depth</td>
</tr>
<tr>
<td>β</td>
<td>Corrugation angle</td>
</tr>
<tr>
<td>N_c</td>
<td>Corrugation number</td>
</tr>
<tr>
<td>q</td>
<td>Corrugated profile factor</td>
</tr>
<tr>
<td>$a_p \text{ and } b_p$</td>
<td>q-relative parameters</td>
</tr>
<tr>
<td>S</td>
<td>Corrugation arc length</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>C</td>
<td>Coulomb</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>GPa</td>
<td>10^9 Pascal</td>
</tr>
<tr>
<td>MPa</td>
<td>10^6 Pascal</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>J</td>
<td>Joel</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter of mercury, unit for pressure, 133 Pascals</td>
</tr>
<tr>
<td>μ</td>
<td>Micro, 10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>Mill, 10^{-3}</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Motivation to this work

Cardiovascular diseases (CVDs) are number one of the leading causes of death. Globally, they underlie the death of one third of the world’s population, as World Health Organization (WHO) Reported.

Furthermore, it was reported that, Low- and middle-income countries are disproportionately affected over 80% of CVD deaths take place in low- and middle-income countries and occur almost equally in men and women.

By 2030, almost 23.6 million people will die from CVDs, mainly from heart disease and stroke.

1.2 Cardiovascular disease definition

As WHO reported, cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels and include:

- Coronary heart disease – disease of the blood vessels supplying the heart muscle.

The coronary arteries arise from the aorta, which is adjacent to the heart. The plaques narrow the internal diameter of the arteries as shown in Fig. 1. 1