Experimental Study of the Effects of Boswellia Serrata and Ginger (Zingiber officinale) on Alzheimer's Disease Induced in Rats

Thesis submitted for fulfillment of Medical Doctorate degree in Medical Pharmacology

By

Basant Mohamed Mahmoud Ibrahim
M.Sc.
Under supervision of

Professor Dr. Nadia Aly Mohamed Gouda
Professor of Medical Pharmacology
Faculty of Medicine
Cairo University

Professor Dr. Abd El-Fattah Hassan Marrie
Professor and Chairman of Medical Pharmacology Department
Faculty of Medicine
Cairo University

Professor Dr. Nemat Ahmed Zakaria Yassin
Professor and Chairman of Pharmacology Department
Medical Division
National Research Centre

Professor Dr. Siham Mostafa Aly Elshenawy
Professor of Pharmacology
Medical Division
National Research Centre

2012
Acknowledgments

I wish to express my deepest gratitude to Professor Dr. Nadia Aly Mohamed Gouda, Professor of Medical Pharmacology, Faculty of Medicine, Cairo University, and Professor Dr. Abd El-Fattah Hassan Marrie, Professor and Chairman of Medical of Medical Pharmacology Department, Faculty of Medicine, Cairo University. My deepest gratitude to Professor Dr. Nemat Ahmed Zakaria Yassin, Professor and Chairman of Pharmacology Department, National Research Centre, and Professor Dr. Siham ElShenawy, Professor of Pharmacology, National Research Centre. My gratitude for all of them for their great effort throughout the whole work. I really deeply appreciate their great help and their valuable supervision.

I wish also to thank Professor Dr. Karam Mahdy, Professor of Chemistry, National Research Centre, for his help and guidance throughout this work.

Also my appreciation to Professor Dr. Abdel-Razek, Professor of Pathology, National Research Centre, for his effort in the pathologic studies.

Many thanks to all the staff working in the Hormone Department, National Research Centre, who performed the Biochemical tests on rat brain homogenate.

I wish to thank very much all my colleagues who helped me in preparing this work in its final form.

Bassant Mohamed
Abstract

Alzheimer's disease is now the most common cause of dementia. Increased oxidative stress, accumulation of oxidatively damaged nucleic acids, proteins, and lipids and inflammation induce deficits in cognitive and psychomotor performance and play an important role in development of Alzheimer's disease (AD). AD was induced in rats by giving AlCl₃ (17 mg / kg b.wt). Aqueous infusions of ginger (Zingiber officinale) (108 and 216 mg / kg b.wt), Boswellia serrata (45 and 90 mg / kg b.wt), rivastigmine (0.3 mg / kg b.wt) were given orally to study their protective as well as therapeutic effects on AlCl₃ induced AD in rats, which were evaluated by using behaviour stress tests as activity cage, rotarod and T-maze as well as by biochemical tests for detection of ACh and ACh E in brain homogenate and histopathologic examination.

Ginger and Boswellia serrata produced protective and therapeutic effects on AD.

Key words: Alzheimer's disease, oxidative, inflammation, cognitive, AlCl₃, Ginger, Boswellia serrata, activity cage, rotarod, T-maze, ACh, Ach E.
Contents

1.1. **Introduction**---1

1.2. **Aim of work**---3

2. **Review of literature:**

2.1 Alzheimer's Disease:--4

2.1.1) Aetiology of Alzheimer's disease-------------------------------4

2.1.2) Manifestations of Alzheimer's disease----------------------7

2.1.3) Cholinergic hypothesis of Alzheimer's disease-----------------8

2.1.4) Pathological changes in Alzheimer's disease---------------11

2.1.5) Treatment of Alzheimer's disease-----------------------------12

2.1.5.1) Medical approach---13

2.1.5.1.1) Choline esterase inhibitors----------------------------13

2.1.5.1.1.A) First generation cholinesterase inhibitors--------14

2.1.5.1.1.B) Second-generation cholinesterase inhibitors-------15

2.1.5.1.2) Memantine---17

2.1.5.1.3) Secretase inhibitors------------------------------------17

2.1.5.1.4) Brain derived neurotropic factor (BDNF)--------------18

2.1.5.1.5) Melatonin--18

2.1.5.2) Clinically used herbal-originated drugs in AD treatment----18

2.1.5.2.1) Ginkgo biloba-------------------------------------18

2.1.5.2.2) Huperzine A--19

2.1.5.2.3) Alpha lipoic acid----------------------------------19

2.1.5.2.4) Reservatrol--20

2.1.5.3) Immunization--20

2.2 Oxidative Stress---21

2.2.1) Antioxidant defensive mechanisms---------------------------22

2.2.2) Natural antioxidants--------------------------------------23
Contents

2.3 Ginger (Zingiber officinale)----------------------------------24
 2.3.1) Nutrient Composition--24
 2.3.2) Phytochemistry--25
 2.3.3) Traditional Use of Ginger-----------------------------------25
 2.3.4) Pharmacological Effects--------------------------------------26
 2.3.4.1) Anti-oxidant effect of Ginger-----------------------------26
 2.3.4.2) Anti-inflammatory activity-------------------------------26
 2.3.4.3) Effects on cardiovascular system-------------------------27
 2.3.4.4) Anticoagulant/Antiplatelet potential--------------------27
 2.3.4.5) Cholesterol lowering effects-----------------------------28
 2.3.4.6) Hypoglycemic effect-------------------------------------28
 2.3.4.7) Effects on the gastrointestinal tract----------------------28
 2.3.4.8) Antipyretic and Thermogenic effect-------------------------29
 2.3.4.9) Antimicrobial effects------------------------------------29
 2.3.4.10) Effect on Nervous system---------------------------------30
 2.3.5) Safety of Ginger---30

2.4 Boswellia Serrata---31
 2.4.1) Phytochemistry---31
 2.4.2) Traditional use of Boswellia Serrata------------------------32
 2.4.3) Pharmacological Effects-------------------------------------32
 2.4.3.1) Anti-inflammatory--32
 2.4.3.2) Effect on nervous system---------------------------------34
 2.4.3.3) Anticancer effect of Boswellia Serrata-------------------34
 2.4.4) Mechanisms of Action--------------------------------------34
 2.4.5) Safety of Boswellia serrata-------------------------------35

2.5.1 Animal models of Alzheimer's Disease------------------------36
 2.5.1.1) Transgenic mouse model---------------------------------36
 2.5.1.2) Transgenic mice for both human Aβ and human α-synuclein--36
 2.5.1.3) Doubly transgenic mice for human APP and human mutant tau--37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1.4) Acute cholinergic dysfunction-related animal models</td>
<td>37</td>
</tr>
<tr>
<td>2.5.1.5) Chronic animal model</td>
<td>37</td>
</tr>
<tr>
<td>2.5.2 Aluminium Chloride Toxicity</td>
<td>40</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>42</td>
</tr>
<tr>
<td>Results</td>
<td>54</td>
</tr>
<tr>
<td>Discussion & Conclusion</td>
<td>124</td>
</tr>
<tr>
<td>Summary</td>
<td>147</td>
</tr>
<tr>
<td>References</td>
<td>150</td>
</tr>
<tr>
<td>الملخص العربي</td>
<td>192</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Evaluation of protective effects of Ginger and Boswellia serrata aqueous infusions on AlCl₃ induced AD in rats by using Activity cage and Rotarod</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation of protective effects of Ginger and Boswellia serrata aqueous infusions on AlCl₃ induced AD in rats by using T-Maze.</td>
</tr>
<tr>
<td>3</td>
<td>Effects of Ginger(108 and 216 mg/kg) and Boswellia serrata(45 and 90 mg/kg) aqueous infusions on Acetylcholine and Acetylcholine esterase levels in brain homogenate when used for protection from AlCl₃ induced AD in rats</td>
</tr>
<tr>
<td>4</td>
<td>Evaluation of therapeutic effects of Ginger and Boswellia serrata aqueous infusions on AlCl₃ induced AD in rats by using Activity cage</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation of therapeutic effects of Ginger and Boswellia serrata aqueous infusions on AlCl₃ induced AD in rats by using Rotarod</td>
</tr>
<tr>
<td>6</td>
<td>Evaluation of therapeutic effects of Ginger and Boswellia serrata aqueous infusions on AlCl₃ induced AD in rats by using T-Maze.</td>
</tr>
<tr>
<td>7</td>
<td>Effects of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions on Acetylcholine and Acetylcholine esterase levels in brain homogenate when used for treatment of AlCl₃ induced AD in rats.</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of the effects of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions when used for protection and treatment of AlCl₃ induced AD in rats by using the Activity cage.</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of the effects of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions when used for protection and treatment of AlCl₃ induced AD in rats by using the Rotarod</td>
</tr>
<tr>
<td>10</td>
<td>Comparison of the effects of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions when used for protection and treatment of AlCl₃ induced AD in rats by using the T-Maze.</td>
</tr>
<tr>
<td>11</td>
<td>Comparison of the effects of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions on Acetylcholine and Acetylcholine esterase levels in brain homogenates when used for protection and treatment of AlCl₃ induced AD in rats.</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Auguste Deter.</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Schematic drawing of APP and generation of Aβ isoform.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Diagram of a neuron representing alterations in neurotransmission in AD.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Ginger rhisome.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Boswellia Serrata (frankincense)</td>
<td>31</td>
</tr>
<tr>
<td>Figure 6</td>
<td>a) Activity cage b) Grid floor of activity cage</td>
<td>48</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Rotarod.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 8</td>
<td>T-Maze.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Protective effect of Ginger (108 and 216 mg/kg) aqueous infusion on AlCl₃ induced Alzeheimer's disease in rats tested by using activity cage.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Protective effect of Boswellia serrata (45 and 90mg/kg) aqueous infusion on AlCl₃ induced Alzheimer's disease in rats tested by using activity cage.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Effect of Ginger (108 and 216mg/kg) aqueous infusion on protection from AlCl₃ induced Alzheimer's disease in rats tested by using rotarod.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Effect of Boswellia serrata (45 and 90 mg/kg) aqueous infusion on protection from AlCl₃ induced Alzheimer's disease in rats tested by using rotarod.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Effect of Ginger (108 and 216mg/kg) aqueous infusion on protection from AlCl₃ induced Alzheimer's disease in rats by using T-Maze.</td>
<td>68</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Effect of Boswellia serrata (45 and 90mg/kg) aqueous infusion on protection from AlCl₃ induced Alzheimer's disease in rats by using T-Maze.</td>
<td>68</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Effect of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusion on Acetylcholine in brain homogenate when used for protection from AlCl₃ induced Alzheimer's disease in rats.</td>
<td>72</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Effect of Ginger (108 and 216mg/kg) and Boswellia serrata (45 and 90mg/kg) aqueous infusions on Acetylcholine esterase in brain homogenate when used for protection from AlCl₃ induced Alzheimer's disease in rats.</td>
<td>72</td>
</tr>
<tr>
<td>Figure 17</td>
<td>The effect of Rivastigmine (0.3 mg/kg) on treatment of AlCl₃ induced Alzheimer's disease in rats by using the activity cage.</td>
<td>77</td>
</tr>
<tr>
<td>Figure 18</td>
<td>The effect of Ginger (108 mg/kg) aqueous infusion on treatment of AlCl₃ induced Alzheimer's disease in rats by using activity cage.</td>
<td>78</td>
</tr>
<tr>
<td>Figure 19</td>
<td>The effect of Ginger (216 mg/kg) aqueous infusion on treatment of AlCl₃ induced Alzheimer's disease in rats by using activity cage.</td>
<td>78</td>
</tr>
<tr>
<td>Figure 20</td>
<td>The effect of Boswellia Serrata (45 mg/kg) aqueous infusion on treatment of AlCl₃ induced Alzheimer's disease in rats by using activity cage.</td>
<td>79</td>
</tr>
<tr>
<td>Figure 21</td>
<td>The effect of Boswellia Serrata (90 mg/kg) aqueous infusion on treatment of AlCl₃ induced Alzheimer's disease in rats by using the activity cage.</td>
<td>79</td>
</tr>
<tr>
<td>Figure 22</td>
<td>The effect of Rivastigmine versus Ginger (108 and 216 mg/kg) and Boswellia Serrata (45 and 90 mg/kg) aqueous infusions given for 12 weeks for treatment of AlCl₃ induced Alzheimer's disease in rats by using the activity cage.</td>
<td>80</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>The effect of Rivastigmine (0.3 mg/kg) on treatment of AlCl$_3$ induced</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>The effect of Ginger (108 mg/kg) aqueous infusion on treatment of AlCl$_3$</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>induced Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>The effect of ginger (216 mg/kg) aqueous infusion on treatment of AlCl$_3$</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>induced Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>The effect of Boswellia Serrata (45 mg/kg) aqueous infusion on treatment of</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>AlCl$_3$ induced Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>The effect of Boswellia Serrata (90 mg/kg) aqueous infusion on treatment of</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>AlCl$_3$ induced Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Evaluation of the effect of Rivastigmine (0.3 mg/kg) versus Ginger (108</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>and 216 mg/kg) and Boswellia Serrata (45 and 90 mg/kg) on treatment of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AlCl$_3$ induced Alzheimer's disease in rats by using the rotarod</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>The effect of Rivastigmine (0.3 mg/kg) on treatment of AlCl$_3$ induced</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats by using the T-maze</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Effect of Ginger (108 mg/kg) aqueous infusion on treatment of AlCl$_3$</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>induced AD by using T-Maze test</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Effect of Ginger (216 mg/kg) aqueous infusion on treatment of AlCl$_3$</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>induced AD by using T-Maze test</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Effect of Boswellia Serrata (45 mg/kg) on treatment of AlCl$_3$ induced</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats by using the T-maze</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Effect of Boswellia Serrata (90 mg/kg) on treatment of AlCl$_3$ induced</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats by using the T-maze</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Effect of Rivastigmine (0.3 mg/kg) versus Ginger (108 and 216 mg/kg) and</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Boswellia Serrata (45 and 90 mg/kg) on treatment of AlCl$_3$ induced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats by using the T-maze</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Effect of Ginger (108 and 216 mg/kg) and Boswellia Serrata (45 and 90 mg/kg)</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>on Acetylcholine in brain homogenate when used for treatment of AlCl$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>induced Alzheimer's disease in rats</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Effect of Ginger (108 and 216 mg/kg) and Boswellia Serrata (45 and 90 mg/kg)</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>on AChE in brain homogenate when used for treatment of AlCl$_3$ induced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alzheimer's disease in rats</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Section of brain of normal rat</td>
<td>111</td>
</tr>
<tr>
<td>38 a</td>
<td>Section of brain of positive control rat</td>
<td>111</td>
</tr>
<tr>
<td>38 b,c</td>
<td>Section of brain of positive control rat</td>
<td>112</td>
</tr>
<tr>
<td>39</td>
<td>Section of brain of rat receiving Rivastigmine 0.3 mg/kg only for 15 days</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>then Rivastigmine 0.3 mg/kg + AlCl$_3$ for four weeks used for protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from AD</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Section of brain of rat receiving Ginger 108 mg/kg only for 15 days then</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>AlCl$_3$ for four weeks used for protection from AD</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Section of brain of rat receiving Ginger 216 mg/kg only for 15 days then</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>AlCl$_3$ for four weeks used for protection from AD</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Section of brain of rat receiving Boswellia Serrata 45 mg/kg only for 15</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>days then Boswellia Serrata 45 mg/kg + AlCl$_3$ for four weeks used for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protection from AD</td>
<td></td>
</tr>
</tbody>
</table>
Figure 43: Section of brain of rat receiving *Boswellia Serrata* 45 mg / kg only for 15 days then *Boswellia Serrata* 90 mg / kg + AlCl₃ for four weeks used for protection from AD.

Figure 44: Section of brain of rat receiving *Boswellia Serrata* 90 mg / kg only for 15 days then *Boswellia Serrata* 90 mg / kg + AlCl₃ for four weeks used for protection from AD.

Figure 45: Section of brain of normal rat (Therapeutic Study).

Figure 46 (a): Section (I) of brain (dissected after sixteen weeks of beginning of the experiment) of rat receiving AlCl₃ (17 mg/Kg) for four successive weeks and left without treatment of AD for twelve successive weeks.

Figure 46 (b): Magnification of Fig 46.

Figure 47: Section (II) of brain (dissected after sixteen weeks of beginning of the experiment) of rat receiving AlCl₃ (17 mg/Kg) for four successive weeks and left without treatment of AD for twelve successive weeks.

Figure 48: Section of brain of rat receiving Rivastigmine (0.3mg/kg) used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 49: Section of brain of rat receiving Ginger 108 mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 50: Section of brain of rat receiving Ginger 216 mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 51: Section of brain of rat receiving Ginger 216 mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 52: Section (I) of brain of rat receiving *Boswellia Serrata* 45mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 53: Section (II) of brain of rat receiving *Boswellia Serrata* 45mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 54: Section of brain of rat receiving *Boswellia Serrata* 90 mg / kg used for treatment of AD for twelve weeks after induction of AD by AlCl₃.

Figure 55: Section of the stomach wall of normal control rat.

Figure 56: Section of the stomach of rat receiving Ginger 108 mg / kg only for 15 days then Ginger 108 mg/kg + AlCl₃ 17 mg / kg for four weeks.

Figure 57 (a): Section of the stomach of rat receiving Ginger 216 mg/kg only for 15 days then Ginger 216 mg/kg + AlCl₃ 17 mg/kg for one month.

Figure 57 (b): Magnification of Fig 58.
Abbreviations

A
Ach: Acetylcholine
AchE: Acetylcholine esterase
AKPA: Acetyl-11-keto-β-boswellic acid
ADL: Activities of daily living
ATPase: Adenosine triphosphatase
ALA: Alpha lipoic acid
Al: Aluminum
Alcl₃: Aluminum chloride
ANOVA: One-way analysis of variance
AD: Alzheimer’s disease
APP: Amyloid precursor protein
AICD: Amyloid precursor protein intracellular domain

B
Aβ: Beta-amyloid peptide
BBA: Beta-boswellic acid
BSA: Bovine serum albumin
BDNF: Brain derived neurotorpic factor
BuChE: Butyrylcholinesterase
BHA: Butylated hydroxyanisole
b.wt: Body weight
BSD: Boswellia 45 mg /kg
BLD: Boswellia 90 mg /kg

C
Ca²⁺: Calcium
ChAT: Choline acetyl transferase
ChE: Cholinesterase
ChEI: Cholinesterase inhibitors
CuZnSOD: Copper zinc Super Oxide Dismutase
CA3: Cornu Ammonis3 area of hippocampus proper
COX: Cyclooxygenase

D
DPPH: 1,1-diphenyl-2-picrylhydrazyl
DMBA: 7, 12-dimethylbenz anthracene
DNA: Deoxy ribonucleic acid
Abbreviations

E
- ELISA: Enzyme linked immunosorbent assay
- E.S.R: Erythrocyte sedimentation rate
- EAA: Excitatory amino acid
- ERK: Extracellular signal-regulated kinases 1 and 2

F
- FAO: Food and Agriculture Organization of the United Nations
- FDA: Food and Drug Administration

G
- GABA: Gamma amino butyric acid
- GRAS: Generally Recognised as Safe
- GBE: Ginkgo biloba extract
- GSH-PX: Glutathione peroxidase
- gm: Gram
- GIT: Gastro intestinal tract
- GSD: Ginger 108 mg/kg
- GLD: Ginger 216 mg/kg

H
- 5-HETE: 5-hydroxyeicosatetraenoic acid
- H₂O₂: Hydrogen peroxide

I
- iNOS: Inducible nitric oxide synthetase
- IA: Incensole Acetate
- IL: Interleukins
- i.c.v: Intra-cerebroventricular

J
- JNK: c-Jun N-terminal kinase

K
- KBA: 11-keto boswellic acid
- Kg: Kilogram

L
- LTB4: Leukotriene B4
- LPS: Lipopolysaccarides
- LDL: Low density lipoproteins
Abbreviations

M
- MDA: Malondialdehyde
- Mepaco: Arab company for pharmaceutical and medicinal plants
- MTP: Microtubule proteins
- ml: Milliliter
- mg: Milligram
- mM: Millimolar
- MMSE: Mini mental state examination
- MAPKs: Mitogen-activated protein kinases

N
- NF-κB: Nuclear factor kappa B
- NGF: Nerve growth factor
- NFTs: Neurofibrillary tangles
- NO: Nitric oxide
- NMDA: N-methyl-D-aspartate
- NSAID: Non steroidal anti-inflammatory drugs

P
- PD: Parkinson’s disease
- pmol: Picomole
- PMN: Polymorphonuclear leucocytes
- PUFA: Polyunsaturated fatty acids
- pH: Power of hydrogen
- PGE2: Prostaglandin E2

R
- RNS: Reactive nitrogen species
- ROS: Reactive oxygen species
- RO•: Alkoxyl radical
- ROO•: Peroxyl radical
- rpm: Rotations per minute

S
- NaCl: Sodium chloride
- s APP: Soluble amyloid precursor protein
- S.E: Standard error
- O₂⁻: Superoxide anion
- SOD: Superoxide dismutase
Abbreviations

T
- TPA: 12-O-tetradecanoylphorbol-13-Acetate
- TBARS: Thiobarbituric acid reactive substance
- TRPV3: Transient receptor potential vanilloid3
- Tris-HCl: 2-Amino-2-hydroxymethyl-1,3-propanediol hydrochloride
- TNF-α: Tumour necrosis factor

V
- V717F: Valine at residue 717 substituted by phenylalanine
- VLDL: Very low density lipoproteins

W
- WBCs: White blood cells
- Wks: weeks
- WHO: World Health Organisation
1.1) Introduction

1.1.1) Alzheimer's Disease

Alzheimer's disease (AD), which represents one of the most economically costly diseases to society is a neurodegenerative disorder characterized by progressive degeneration of hippocampal and cortical neurons that leads to impairment of memory and cognitive ability. Impairment of short-term memory is usually the first clinical feature, whereas retrieval of distant memories is preserved relatively well into the course of the disease. When the condition progresses, additional cognitive abilities are impaired, as the ability to calculate, and use common objects and tools. The pathological hallmarks of AD are senile plaques, which are spherical accumulations of the protein β-amyloid accompanied by degenerating neuronal processes, and neurofibrillary tangles, composed of paired helical filaments and other proteins. This corresponds to the clinical features of marked impairment of memory and abstract reasoning, with preservation of vision and movement (Ryoichi & Masuo, 2009).

The selective deficiency of acetylcholine in AD, has given rise to the "cholinergic hypothesis," which proposes that a deficiency of acetylcholine is critical in the genesis of the symptoms of AD (Terry & Buccafusco, 2003). Therefore a major approach to the treatment of AD has involved attempts to augment the cholinergic function of the brain. This involves the use of inhibitors of acetyl cholinesterase as tacrine, donepezil, rivastigmine, and galantamine (Lon et al, 2008). Also other hypotheses state that inflammation plays a key role in the pathogenesis of AD. In addition excessive reactive oxygen species (ROS) levels are implicated in the aetiology of AD (Zhu et al, 2006).
1.1.2) Ginger (Zingiber officinale)

Ginger has been listed in “Generally Recognized as Safe” (GRAS) document of the United States Food and Drug Administration (FDA) (Ajith et al, 2008). Ginger extract has anti-oxidative properties and scavenges superoxide anion and hydroxyl radicals due to its high content of gingerol which is a polyphenolic compound. Ginger also has anti-inflammatory properties (Nirmala et al, 2008).

1.1.3) Boswellia serrata

Boswellia is a genus of trees known for their fragrant resin which has many pharmacological uses particularly as anti-inflammatory. The boswellic acids that are a component of the resin have shown some promise as a treatment for asthma and various inflammatory conditions (Gupta et al, 1998). Boswellia gum extraction from its resins is used to provide prevention and treatment of colitis, ulcerative colitis, Crohn’s disease, and ileitis, also boswellia shows satisfactory antioxidant activity in the cerebral-vascular system (Assimopoulou et al, 2005).

Hypothesis:

Ginger (Zingiber officinale) and Boswellia serrata would have an ameliorative effect on AD due to their anti-inflammatory and antioxidant properties. Ginger contains 6-gingerol and shogaols which are polyphenolic compounds known for their antioxidant properties. Boswellic acids which are the major components of boswellia are responsible for its anti-inflammatory properties.
1.2) Aim of work

The purpose of this experimental work is to investigate the possible prophylactic and curative effects of aqueous infusions of ginger (*Zingiber officinale*) and *Boswellia serrata*, in comparison to standard anticholinesterase rivastigmine on Alzheimer’s disease induced in rats by using aluminium chloride.

The prophylactic and therapeutic effects of ginger and boswellia on rats receiving AlCl₃ for induction of AD, will be evaluated by using behaviour stress tests, measuring acetylcholine and acetylcholinesterase in brain homogenates and Histopathologic examination of the hippocampus for all rats in all groups in this experimental study.
2.1) Alzheimer's Disease

The prevalence and incidence of Alzheimer's disease (AD) increases with age. The typical neuropathological changes in this degenerative disease were first described nearly one hundred years ago by Alois Alzheimer in a fifty-years-old woman called Auguste Deter. Alzheimer followed her until she died in 1906 (Maccioni et al, 2001). AD is now the most common cause of dementia (Hansson et al, 2006).

Fig1: Auguste Deter.
Photograph dated November 1902.
(Konrad et al, 1997)

2.1.1) Aetiology of Alzheimer's disease

Among several pathogenic mechanisms for AD, it seems that oxidative stress through inducing the formation of unusually high concentration of oxygen and nitrogen-reactive species and depletion of endogenous antioxidants plays a role in damaging and killing neurons. There is evidence of increased levels of markers of oxidative stress in brain tissue from AD patients (Maccioni et al, 2001). Neuronal degeneration and death in the neocortex and hippocampus are probably the causes of the striking behavioral and functional deficits of patients with AD (Miguel-Hidalgo et al, 2002). In addition, inflammation,
genetic and cerebro vascular diseases have important roles in development of AD (Vagnucci & Li, 2003).

Increased oxidative stress and accumulation of oxidatively damaged nucleic acids, proteins and lipids disrupt intracellular signal transduction systems and intercellular signaling molecules that are important for maintaining the cellular structure of the brain and its neuronal circuits and thus is thought to exacerbate brain aging and induce deficits in cognitive and psychomotor performance (Richwine et al, 2005).

β-amyloids which are extracellular deposits containing β-amyloid peptide (Aβ) as the major core deposits, has been shown to induce oxidative stress (Banks & Farr, 2004). The basis for the β-amyloid hypothesis arises from various studies showing that Aβ is toxic to neurons, for example, there is increased Aβ release and apoptotic cell death in cells that over express Aβ precursor protein (APP) (Recuero et al, 2004). Aβ are surrounded by activated microglial cells expressing pro-inflammatory cytokines, chemokines, and neurotoxic mediators. Long-term activation of microglial cells is suspected to contribute to the neuron loss in AD (Grzanna et al, 2004).

The longest isoform of Aβ, consisting of 42 amino acids (Aβ1-42), is produced from APP by sequential cleavage by β- and γ-secretase in the amyloidogenic APP-processing pathway (Andreasson et al, 2007) (Fig 2).
Fig 2: Schematic drawing of APP and generation of Aβ isoform.

The 17-amino acid signal peptide is indicated at the N-terminus. A single membrane-spanning domain is located at amino acids 700-723 in the longest APP isoform (APP770). (A) In the amyloidogenic pathway, β-secretase cleaves after residue 671, generating β-sAPP, which is secreted, and a C-terminal fragment (β-CTF or C99), which is retained in the membrane. The β-CTF can undergo further cleavage by γ-secretase to release Aβ isoforms. (B) In another pathway, APP is first cleaved by β-secretase, but after this, by α-secretase, thus generating the shorter isoforms Aβ1-14, Aβ1-15, and Aβ-16. In another described non-amyloidogenenic pathway, α-secretase cleaves between amino acids 16 and 17 in the Aβ sequence generating α-sAPP, followed by γ-secretase cleavages, generating a fragment called p3 (Aβ17-40/42). This 3-kDa fragment has been isolated from cell-culture medium, and in brains from AD patients. However, the fragment has never been detected in human CSF. AICD, APP intracellular domain, APP, amyloid precursor protein, Aβ, amyloid β, sAPP, soluble amyloid precursor protein (Portelius et al, 2010).