Abdominal wall dehiscence: current status in emergency settings

Submitted for partial fulfillment for the requirements of M.Sc. in General Surgery

By
Mahmoud Abdelmonem Ameen Biomy
M.B.B.Ch.

Under supervision of

Prof. Dr. Sayed Ahmed Marei MD.
Professor of general surgery
Faculty of medicine, Cairo University

Prof. Dr. Ayman Mohammed Attef Elsamadoni MD.
Professor of general surgery
Faculty of medicine, Cairo University

Prof. Dr. George Abd elfady Nashed MD.
Professor of general surgery
Faculty of medicine, Cairo University

Faculty of medicine
Cairo University
2012
Key word
Incidions - Wound Healing- Abdominal- Emergency Settings
Exploratory

Abstract
The proliferation phase which is the phase of granulation tissue forms in, the wound space begins in the 3 postoperative day and lasts for several weeks. The most important factor in this phase are fibroblasts which move to the wound and are responsible for the collagen synthesis [3,4]. The maturation phase begins in the 7 postoperative day and lasts for 1 year or more, continued collagen deposition and remodeling contribute to the increased tensile strength of wounds
Acknowledgment

First and foremost, I feel always indebted to ALLAH, the kind and merciful.

I would like to express my deepest gratitude and sincerest thanks to Prof. Dr. Sayed Ahmed Marei, Professor of General Surgery, Cairo University for giving me the privilege to work under his supervision.

Many thanks to Prof. Dr. Ayman el samadoni, Professor of General & vascular Surgery, Faculty of Medicine, Cairo University for his support, encouragement and valuable advices throughout this work.

Words are not enough to express my great thanks and deep appreciation to Prof. Dr. George abd elfady, professor of general surgery, Cairo University for his effort, comments, ideas, constructive criticism and support throughout this thesis.

A very special thanks to my wife Dr. Maysa Marawan and to all my family and my colleagues for their support and encouragement throughout this work.
List of figures

Figure 1: Structures of anterior abdominal wall ..4
Figure 2: Muscles of anterior abdominal wall ..6
Figure 3: Rectus sheath ..10
Figure 4: Arteries of anterolateral abdominal wall13
Figure 5: Lymphatics and superficial veins of anterolateral abdominal wall ..15
Figure 6: Nerves of the Anterolateral Abdominal Wall16
Figure 7: Midline incision ..29
Figure 8: Liver laceration in patient presented with haemoperitoneum ..43
Figure 9: laparotomy in patient with perforated duodenal ulcer44
Figure 10: laparotomy in patients with intestinal obstruction45
Figure 11: dehisced laparotomy wound due to wound infection48
Figure 12: Dehisced surgical wound due to Poor nutrition and anemia ...51
Figure 13: Abdominal wound dehiscence due to mechanical stress52
Figure 14: Abdominal wound dehiscence due to excessive edema53
Figure 15: A burst abdomen resutured by retention sutures55
Figure 16: Stages in mass closure of the midline incision63
Figure 17: Retention sutures tied and held in position supported by rubber tubing ...66
List of tables

Table 1: presentation of cases with wound dehiscence75
Table 2: emergency presentation & type of incision for dehisced cases .75
Table 3: Degree of dehiscence ..76
Table 4: Risk factors contributing to wound dehiscence in our study77
Table 5 Risk factors per patient developed dehiscence and time of occurrence ..77
Table 6: Management of dehisced cases ...78
Table 7: The outcome of dehisced cases ...79
Index

Introduction and aim of work……………………………………………………….1

Literature review:

- Chapter 1: Anatomy of anterior abdominal wall.........................3
- Chapter 2: Wound healing...17
- Chapter 3: Abdominal wall incisions and exploratory laparotomy..27
- Chapter 4: Wound dehiscence...46
- Chapter 5: Abdominal wall closure.................................57

Patients and methods...70

Results..72

Discussion...80

Summary and conclusion...86

References...88

Arabic summary...102
Introduction & Aim of work
Introduction and aim of work

Surgical wound dehiscence after laparotomy remains a serious complication. It presents a mechanical failure of wound healing of surgical incisions. Surgical incisions stimulate the healing process which in reality is a complex and continuous process with four different stages: Hemostasis, inflammation, proliferation, and maturation (Chin et al, 2005).

During hemostasis, platelets aggregate, degranulate and activate blood clotting. The clot is degrading, the capillaries dilates and fluids flow to the wound site, activating the complement cascade.

Macrophages, lysis of cells and neutrophils are a source of cytokines and growth factors that are essential for normal wound healing (Chin et al, 2005).

The proliferation phase which is the phase of granulation tissue forms in, the wound space begins in the 3 postoperative days and lasts for several weeks. The most important factor in this phase is fibroblasts which move to the wound and are responsible for the collagen Synthesis (Waqer et al, 2005, West et al, 2005).

The maturation phase begins in the 7th postoperative day and lasts for 1 year or more, continued collagen deposition and remodeling contribute to the increased tensile strength of wounds (Chin et al, 2005).

Conditions associated with increased risk of wound dehiscence are anemia, hypoalbuminemia, malnutrition, malignancy, jaundice, obesity and diabetes, male gender, elderly patients and specific surgical
Introduction and aim of work

procedures as colon surgery or emergency laparotomy which are associated with wound disruption (Sorensen et al, 2005).

Aim of work

The aim of this study is evaluation of the current status of abdominal wound dehiscence in emergency settings at kasr alaini emergency department concerning the incidence, evaluation of risk factors of wound dehiscence and which of them can be prevented, and the outcome of this condition (morbidity & mortality).
Chapter 1

Anatomy of the anterior abdominal wall
Chapter (1)
Anatomy of the anterior Abdominal wall

The outline of the anterior abdominal wall is approximately hexagonal. It is bounded superiorly by the arched costal margin (with the xiphisternal junction at the summit of the arch). The lateral boundary on either side is, arbitrarily, the mid-axillary line (between the lateral part of the costal margin and the summit of the iliac crest). Inferiorly, on each side, the anterior abdominal wall is bounded in continuity, by the anterior half of the iliac crest, inguinal ligament, pubic crest and pubic symphysis (Vishy Mahadevan, 2009).

Layers of the anterior abdominal wall

The anterior abdominal wall is a multi-layered structure (Figure 1). From the surface inwards, the successive layers are:
- Skin
- Superficial fascia (comprising two layers)
- A musculo-aponeurotic layer (which is architecturally complex and composed of several layers).
- A properitoneal adipose layer
- Parietal peritoneum (Grievous, 2006).
- Transversalis fascia
Anatomy of anterior abdominal wall

Figure 1: structures of anterior abdominal wall (Moore et al, 2006).

Skin:

The skin covering the anterior abdominal wall is thin compared to that of the back, and is relatively mobile over the underlying layers except at the umbilical region, where it is fixed. Natural elastic traction lines of the skin (also known as skin tension lines or Kraissl’s lines) of the anterior abdominal wall are disposed transversely. Above the level of the umbilicus these tension lines run almost horizontally, while below this level they run with a slight inferomedial obliquity. Incisions made along, or parallel to, these lines tend to heal without much scarring, whereas incisions that cut across these lines tend to result in wide or heaped-up scars (Gray et al, 1985).

Beneath the skin, there is the subcutaneous areolar tissue and superficial fascia. Over the lower thorax and epigastrium, the superficial
Anatomy of anterior abdominal wall

fascia consists of one layer. This layer is thin and less organized than in the lower abdomen. In the lower abdomen it becomes more definitively bilaminar. Just superior to the inguinal ligament it can be divided into a superficial fatty stratum, termed Camper’s fascia, and a deeper, stronger, and more elastic membranous layer called Scarpa’s fascia (Gray et al, 1985).

The superficial layer is thick, areolar, and contains a variable amount of fat. This layer continues into the perineum, and in females, it continues over the labia majora. The deep layer is more membranous and contains elastic fibers. It is separated from the underlying deep fascia by a loose areolar layer. Inferiorly, it fuses with the deep fascia of the thigh, medial portion of the inguinal ligament, and pubic tubercle along the line of the fold of each groin (Peter et al, 1989).

Musculo-aponeurotic layer:

The abdominal wall contains multiple large, musculofascial units which serve several functional purposes (Figure 2). Laterally, from external to internal, there are two paired external oblique, internal oblique, and transversus abdominis muscles. There are two paired midline muscle groups which include the rectus abdominis muscle and the pyramidalis. All of these muscles contribute to increasing intraabdominal pressure and aid in micturition, defecation, and parturition (Grevious et al, 2006).
Figure 2: muscles of anterior abdominal wall (A) Rectus abdominis (B) Transvers abdominal (C) Internal oblique (D) External oblique (Moore et al, 2006)

Rectus Abdominis

Rectus abdominis muscle lies on either side of the vertical midline. Each muscle arises by two tendons; a lateral tendon from the pubic crest, and a medial tendon from the upper and anterior surfaces of the pubic symphysis. The two tendons unite a short distance above the pubis to give rise to a single muscle belly which runs upwards to attach to the anterior surfaces of the 7th, 6th and 5th costal cartilages. The upper part of the muscle usually shows three transverse tendinous intersections; one at the level of the umbilicus, one at the level of the xiphoid tip and one halfway between the two. On either side of the rectus abdominis, the musculo-aponeurotic plane is made up of three overlapping arrangement of flat muscular sheets, The outermost of these is the external oblique muscle, the innermost is the transversus abdominis muscle and the intermediate layer is the internal
oblique muscle. of these, only the external oblique has an attachment above the level of the costal margin. Followed anteromedially, each of these muscles becomes aponeurotic. These aponeuroses, between them, enclose the rectus abdominis muscle; the envelope is termed the rectus sheath (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

The external oblique muscle

Arises by fleshy digitations from the outer aspect of each of the lower eight ribs near their costochondral junctions. From this origin the muscle fibres fan downwards and forwards. The fibres that arise from the lower two ribs run downwards to insert onto the anterior half of the outer lip of the iliac crest; the posterior edge of this mass of fibres constitutes the free posterior border of the muscle. The remainder of the muscle ends in a broad aponeurosis. The lower edge of this aponeurosis extends between the anterior superior iliac spine and the pubic tubercle. It is rolled inwards to form a narrow and shallow gutter, and constitutes the inguinal ligament. The rest of the external oblique aponeurosis runs in front of the rectus abdominis muscle of its side and interdigitates with the contralateral aponeurosis along the vertical midline. Below the level of the xiphoid process this interdigititation helps to form a raphe, the linea alba (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

The internal oblique muscle

Lies immediately deep to the external oblique. It arises, in continuity, from the lateral two-thirds of the guttered inguinal ligament, from a central strip along the anterior two-thirds of the iliac crest, and from the lateral margin of the lumbar fascia along the lateral border of the quadratus
Anatomy of anterior abdominal wall

The lumbarum muscle (a muscle of the posterior abdominal wall). The muscle fibres arising from the lumbar fascia run upwards to attach along the length of the costal margin. The remainder of the muscle fibres runs upwards and medially from their origin, becoming aponeurotic lateral to the outer border of the rectus abdominis. At the outer edge of the latter, the aponeurosis of the internal oblique splits into two laminae (anterior and posterior), which run medially, respectively, in front of, and behind the rectus abdominis muscle, to interdigitate with their counterparts in the vertical midline, at the linea alba. The anterior lamina of the internal oblique is thus immediately deep to the external oblique aponeurosis. The posterior lamina running behind the rectus abdominis muscle is immediately in front of the transversus abdominis aponeurosis, down to the arcuate line (see below: rectus sheath) (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

The anatomic plane between the external oblique and internal oblique muscles, however, is virtually bloodless when defined correctly and is used surgically by plastic surgeons in component separation during abdominal wall reconstruction (Ahluwalia et al, 2004).

Transversus abdominis

Arises in continuity from the lateral half of the guttered surface of the inguinal ligament (immediately deep to the origin of the internal oblique), from the inner lip of the anterior two-thirds of the iliac crest, from the lateral margin of the lumbar fascia and from the inner surfaces of the cartilages of the lower six ribs. From this origin, the muscle fibres run forwards and medially, closely applied to the inner surface of the internal oblique. The
fibres become aponeurotic at the lateral edge of the rectus abdominis, and the aponeurosis continues medially behind the posterior lamina of the internal oblique aponeurosis (and therefore behind the rectus abdominis) to meet its counterpart at the linea alba. A few finger-breadths below the level of the umbilicus, however, the aponeuroses of all three muscles run in front of rectus abdominis.

The plane carrying the neurovascular supply to the anterior abdominal wall lies between the internal oblique and the transversus abdominis muscles. This plane is to be avoided anatomically during surgery to avoid bleeding and denervation of the abdominal wall (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

The linea alba

Is a longitudinally disposed, midline interdigitation of the aponeuroses of the three-ply muscles (external oblique, internal oblique and transversus abdominis) of one side with those of the other side. The linea alba extends from the xiphoid process above, to the pubic symphysis below. Lying between the medial edges of the recti, the linea alba is a pale band of fibro-aponeurotic tissue, considerably wider and thicker above the level of the umbilicus than below (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

The rectus sheath (Figure 3)

Is the aponeurotic envelope that ensheathes the rectus abdominis muscle. Thus, the rectus sheath may be said to possess an anterior wall and a
Anatomy of anterior abdominal wall

Figure 3: Rectus sheath (Moore et al, 2006).

posterior wall. The anterior wall of the rectus sheath is composed of two adherent layers; a superficial layer made up of the external oblique aponeurosis and a deep layer made up of the anterior lamina of the internal oblique aponeurosis. The posterior wall of the rectus sheath is, likewise, composed of two adherent layers. The anterior layer of the posterior wall is the posterior lamina of the internal oblique aponeurosis, while the posterior layer is the transversus abdominis aponeurosis. This arrangement holds true only from the level of the costal margin down to a level about three finger-breadths below the umbilicus.

Below this level, all three aponeuroses run in front of the rectus abdominis muscle, with the result that below this level, there is no aponeurotic posterior wall to the rectus sheath.

This abrupt change in the relationship of the aponeuroses to the rectus abdominis, results in the posterior wall of the rectus sheath having a sharp,
Anatomy of anterior abdominal wall

free border, a short distance below the level of the umbilicus. This border is called the arcuate line.

Thus, below the arcuate line the posterior surface of the rectus abdominis muscle is in direct relationship to the fascia transversalis. Above the level of the costal margin, the rectus abdominis is covered on its anterior surface only, by the external oblique aponeurosis alone. The transverse tendinous intersections in the rectus abdominis muscle blend with the anterior wall of the rectus sheath (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

Transversalis fascia

The transversalis fascia is the anterior part of the general endo-abdominal fibrous layer that envelops the peritoneum. It is thicker and less expansile in the lower part of the anterior abdominal wall. The transversalis fascia is closely applied to the deep surface of the transversus abdominis muscle but is easily separable from the latter (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

Properitoneal adipose layer

The peritoneum is the innermost layer of the abdominal wall and the inguinal area. It is loosely connected with the transversalis fascia in most areas, except at the internal ring, where the connection is stronger. Between the peritoneum and the transversalis fascia there is a loose layer of extraperitoneal fat used as an important landmark in many surgical operations (Huger et al, 1979). This layer offers little resistance to the spread of infection and, consequently, cellulitis secondary to surgical wound
infections may spread rapidly within it (Gray et al, 1985; Peter et al, 1989; Skandalakis et al, 1999).

Arterial Supply (Figure 4)

The lower anterolateral abdominal wall is perfused by three superficial branches of the femoral artery. From superior to inferior, these are the superficial circumflex iliac artery, the superficial epigastric artery, and the superficial external pudendal artery. These arteries are directed toward the umbilicus in the subcutaneous tissue. Each superficial epigastric artery anastomoses with the contralateral artery and all anastomose with deep epigastric arteries (Huger et al, 1979).

Defined three zones with respect to their corresponding primary blood supplies. Zone I overlying the rectus muscles is perfused by the superior–inferior epigastric system. Zone II lies in the lower abdominal region from a transverse line at the level of the anterior superior iliac spines to the pubis and inguinal creases and is supplied by the superficial epigastric, superficial external pudendal, and circumflex iliac system. Zone III is from the flare of the costal margin to the transverse line corresponding to the anterior superior iliac spines and is supplied by branches from the intercostal and lumbar arteries (Huger et al, 1979).