OPTIMIZED BALANCED SCORECARD INTEGRATED MODEL FOR EVALUATION OF ORGANIZATIONS PERFORMANCE

by

Hagag Maher Abd El-Hameed Abou El-Hasan
B.Sc. Industrial Engineering

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in
MECHANICAL DESIGN AND PRODUCTION

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2011
OPTIMIZED BALANCED SCORECARD INTEGRATED MODEL FOR EVALUATION OF ORGANIZATIONS PERFORMANCE

by

Hagag Maher Abd El-Hameed Abou El-Hasan
B.Sc. Industrial Engineering

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in
MECHANICAL DESIGN AND PRODUCTION

Under the Supervision of

Prof. Dr. Aly Ahmed Khattab
Professor of Mechanical Design, Mechanical Design and Production Department, Faculty of Engineering, Cairo University

Dr. Mohammed Fahmy Aly
Assistant professor, Industrial Engineering Department, Faculty of Engineering, Fayoum University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2011
OPTIMIZED BALANCED SCORECARD INTEGRATED MODEL FOR EVALUATION OF ORGANIZATIONS PERFORMANCE

by

Hagag Maher Abd El-Hameed Abou El-Hasan
B.Sc. Industrial Engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in MECHANICAL DESIGN AND PRODUCTION

Approved by the

Examining Committee:

Prof. Dr. Attia Hussein Gomaa, Chairman

Prof. Dr. Mohamed H. Gadallah, Member

Prof. Dr. Aly Ahmed Khattab, Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2011
Engineer: Hagag Maher Abd El-Hameed Abou El-Hasan
Date of Birth: 18/10/1982
Nationality: Egyptian
E-mail: hma01@fayoum.edu.eg
Registration Date: 1/10/2006
Awarding Date: / /
Degree: Master of Science
Department: Mechanical Design and Production
Supervisors: Prof. Dr. Aly Ahmed Khattab
Dr. Mohammed Fahmy Aly (Assistant Professor, Industrial Engineering Department, Faculty of Engineering, Fayoum University).
Examiners: Prof. Dr. Atta Hussein Gomaa (Professor of Industrial Engineering, Faculty of Engineering at Shoubra, Benha University and Lecturer at the American University in Cairo).
Prof. Dr. Mohamed Hassan Gadallah
Prof. Dr. Aly Ahmed Khattab
Title of Thesis: Optimized Balanced Scorecard Integrated Model for Evaluation of Organizations Performance
Key Words: Strategic Planning, Performance Measurement, Balanced Scorecard, Genetic Algorithm, Analytic Hierarchy Process
Summary:
This study covers the measurement of organizations performance using Balanced Scorecards (BSC). BSC model is integrated with Analytic Hierarchy Process (AHP) technique which used to estimate BSC weights. One of the main problems in AHP is inconsistency of the judgment and accuracy. So, this work proposes a new prioritization model. The proposed prioritization model combines AHP and Genetic Algorithm (GA) called AHPGA model. Verification of AHPGA model is performed in numerous cases. BSC model applied to an industrial company and the results show that BSC model is a successful tool to measure organizations performance. And developed BSC is a good tool for monitoring strategic plan. Results of AHPGA model are compared with other prioritization methods. Comparisons show that AHPGA model yields better and accurate results than the others models used.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xvi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Literature Survey</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Overview</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Balanced Scorecard</td>
</tr>
<tr>
<td></td>
<td>1.2.3 Analytic Hierarchy Process and Balanced Scorecard</td>
</tr>
<tr>
<td></td>
<td>1.2.4 Analytic Hierarchy Process and Genetic Algorithms</td>
</tr>
<tr>
<td></td>
<td>1.2.5 Literature Survey Analysis</td>
</tr>
<tr>
<td>1.3 Research Motivation</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Scope of Work</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Importance of Thesis</td>
<td>12</td>
</tr>
<tr>
<td>1.6 Thesis Organization</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 2: STRATEGIC PLANNING</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Strategic Planning</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Basic Steps of Strategic Planning</td>
</tr>
<tr>
<td></td>
<td>2.2.2 SWOT Analysis</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Identify and Prioritize Strategic Issues</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Define Strategic Goals and Objectives</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Monitor and Evaluate Periodically</td>
</tr>
<tr>
<td>2.3 Balanced Scorecard</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Balanced Scorecard Perspectives</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Cause and Effect Relationships (Strategic Map)</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Outcomes and Performance Drivers</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Key Performance Indicators</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Weights of Balance Scorecard Indicators</td>
</tr>
</tbody>
</table>
CHAPTER 6: APPLICATION OF THE PROPOSED BSC MODEL 88
6.1 Company Overview ... 88
6.2 Company Strategic Planning 88
 6.2.1 Vision ... 88
 6.2.2 Mission ... 89
 6.2.3 Core Values ... 89
 6.2.4 Strategic Objectives 89
 6.2.5 Company Quality Policy 90
 6.2.6 Company Strategic Plan Observations 91
6.3 Model Implementation .. 91
 6.3.1 Preparation for the Model 91
 6.3.2 Identify Balanced Scorecard Perspectives and Objectives 92
 6.3.3 Select Performance Measures 93
 6.3.4 Operationalize the Model 98
6.4 ZEINOX Performance Information 98
6.5 Results and Recommendations 100
 6.5.1 Estimate and Optimize Balanced Scorecard Weights 100
 6.5.2 Balance Scorecards Results 106
6.6 Recommendations for ZEINOX Company 112
CHAPTER 7: SUMMARY AND CONCLUSIONS 113
7.1. Summary .. 113
7.2. Conclusions .. 114
7.3. Future Work ... 115
REFERENCES .. 117
APPENDICES .. 123
 Appendix A: MATLAB Codes for AHPGA Model 123
 Appendix B: Data of ZEINOX Case Study 126
LIST OF FIGURES

Figure 2.1 : Meaning of strategic planning ... 15
Figure 2.2 : Core elements of strategic planning [44]................................. 16
Figure 2.3: SWOT analysis presentation ... 20
Figure 2.4: Kaplan and Norton balanced scorecard model [2]......................... 22
Figure 2.5: Example for strategic mapping [46].. 27
Figure 3.1: Simple analytic hierarchy process [47]....................................... 31
Figure 3.2: Analytic hierarchy process steps ... 32
Figure 3.3: Genetic Algorithm basic steps .. 45
Figure 3.4: Genetic Algorithm procedure ... 47
Figure 3.5: Illustration of mutation process .. 48
Figure 3.6: Roulette wheel selection [29] .. 49
Figure 3.7: Example of binary encoding ... 51
Figure 3.8: Example of permutation encoding ... 51
Figure 3.9: Example of value encoding ... 51
Figure 3.10: One-point crossover ... 52
Figure 3.11: Two-point crossover ... 52
Figure 3.12: Uniform crossover ... 53
Figure 4.1: The developed balanced scorecard model [14] 55
Figure 4.2: Genetic Algorithm procedure for priority derivation 63
Figure 4.3: Pseudo code of proposed prioritization model 64
Figure 4.4: Proposed prioritization model flow chart 65
Figure 5.1: Criteria priority vectors .. 69
Figure 5.2: Total deviations for reservoir storage allocation problem 72
Figure 5.3: Hierarchical structure for water leakage management problem [54]. ... 73
Figure 5.4: Comparison between Eigen-value and proposed model 75
Figure 5.5: Compression between different priority methods 78
Figure 5.6: Hierarchy structure for selecting the high school example [23] 79
Figure 5.7: Example 5 hierarchical structure [25]. ... 82
Figure 5.8: Chart of total deviation for different priority methods 84
Figure 5.9: Total deviations of priorities for different optimization methods .. 87
Figure 6.1: ZEINOX strategic mapping... 93
Figure 6.2: ZEINOX hierarchy structure .. 101
Figure 6.3: Total deviation for initial AHP and proposed models 105
Figure 6.4: Absolute weights chart for BSC using initial AHP model 109
Figure 6.5: Absolute weights chart for BSC using proposed AHPGA model 109
Figure 6.6: Pie chart for BSC using initial AHP model 110
Figure 6.7: Pie chart for BSC using proposed AHPGA model. 110
LIST OF TABLES

Table 2.1: Example for key performance indicators .. 28
Table 3.1: Saaty’s relative importance scale [48] .. 33
Table 3.2: Random index values [48] .. 38
Table 4.1: Proposed genetic algorithm parameter setting 66
Table 5.1: Compression matrices for reservoir storage allocation problem [23]. .. 68
Table 5.2: Priority vector for alternatives using AN method [23] 69
Table 5.3: Priority vector for alternatives using EV method [23] 70
Table 5.4: Priority vector for alternatives using WLS method [23] 70
Table 5.5: Priority vector for alternatives using LLS method [23] 70
Table 5.6: Priority vector for alternatives using FPP method [23] 71
Table 5.7: Priority vector for alternatives using LGP method [23] 71
Table 5.8: Priority vector for alternatives using AHPGA method. 71
Table 5.9: Pair-wise comparison matrix and priorities of criteria 74
Table 5.10: Pair-wise comparison matrix and priorities for improvement matrix .. 74
Table 5.11: Inconsistent matrix of criteria and priorities 74
Table 5.12: Priority vectors obtained by different priority methods [24] 77
Table 5.13: Pair wise compression matrices for selecting the high school [23]. .. 79
Table 5.14: Criteria priority vectors for selecting the high school example 79
Table 5.15: Priority vector for alternatives using AN and EV methods [23]. .. 80
Table 5.16: Priority vector for alternatives using WLS and LLS methods [23]. .. 80
Table 5.17: Priority vector for alternatives using FPP and LGP methods [23]. 81
Table 5.18: Priority vector for alternatives using AHPGA method 81
Table 5.19: Compression between different prioritization methods for selecting the high school example .. 81
Table 5.20: Pair-wise comparison matrices for criteria and alternatives...........82
Table 5.21: Total deviation for different prioritization methods.........................84
Table 5.22: Pareto optimal solutions obtained by PESA-II [36].......................85
Table 5.23: Pareto optimal solutions obtained by a gradient search method [36].
...86
Table 5.24: Pareto optimal solutions obtained by a single-objective
evolutionary algorithm [36]..86
Table 5.25: Optimal solutions obtained by proposed AHPGA model86
Table 6.1: ZEINOX balanced scorecard perspectives ...92
Table 6.2: ZEINOX customer objectives and measures95
Table 6.3: ZEINOX internal process objectives and measures96
Table 6.4: ZEINOX learning and growth objectives and measures97
Table 6.5: ZEINOX performance information ..98
Table 6.6: ZEINOX pair-wise comparison matrices for balanced scorecard102
Table 6.7: ZEINOX BSC priority vector using proposed models.....................103
Table 6.8: Financial objectives priority vector using proposed models103
Table 6.9: Customer objectives priority vector using proposed models103
Table 6.10: Internal processes objectives priority vector using proposed models
...104
Table 6.11: Learning and growth priority vector using proposed models104
Table 6.12: Comparison between initial AHP model and proposed model105
Table 6.13: Balanced scorecard software performance results106
Table 6.14: Strategy tree and scorecard details for financial perspective111
Table 6.15: Strategy tree and scorecard details for customer perspective111
Table 6.16: Strategy tree and scorecard details for internal processes
perspective ..111
Table 6.17: Strategy tree and scorecard details for learning and growth112
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Activity-Based Costing</td>
</tr>
<tr>
<td>ABM</td>
<td>Activity-Based Management</td>
</tr>
<tr>
<td>ABS</td>
<td>Aligned Balanced Scorecard</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>AHPGA</td>
<td>Analytic Hierarchy Process and Genetic Algorithm Model</td>
</tr>
<tr>
<td>AN</td>
<td>Additive Normalization</td>
</tr>
<tr>
<td>ANC</td>
<td>Average Normalized Column</td>
</tr>
<tr>
<td>ANP</td>
<td>Analytic Network Process</td>
</tr>
<tr>
<td>BNQP</td>
<td>Baldrige National Quality Program</td>
</tr>
<tr>
<td>BSC</td>
<td>Balanced Scorecard</td>
</tr>
<tr>
<td>BSC-AHP</td>
<td>Balanced Scorecard and Analytic Hierarchy Process Model</td>
</tr>
<tr>
<td>BSC-AHPGA</td>
<td>Balanced Scorecard, Analytic Hierarchy Process and Genetic Algorithm Model</td>
</tr>
<tr>
<td>CBR</td>
<td>Case Based Reasoning</td>
</tr>
<tr>
<td>CCMA</td>
<td>Correlation Coefficient Maximization Approach</td>
</tr>
<tr>
<td>CR</td>
<td>Consistency Ratio</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>CT</td>
<td>Customer Perspective</td>
</tr>
<tr>
<td>CV</td>
<td>Consistency Vector</td>
</tr>
<tr>
<td>CVA</td>
<td>Customer Value Analysis</td>
</tr>
<tr>
<td>DEA</td>
<td>Data Envelopment Analysis</td>
</tr>
<tr>
<td>DEAHP</td>
<td>Approach Combining Data Envelopment Analysis and Analytic Hierarchy Process</td>
</tr>
<tr>
<td>DLSM</td>
<td>Direct Least Square Method</td>
</tr>
<tr>
<td>EC</td>
<td>Evolutionary Computing</td>
</tr>
<tr>
<td>EFQM</td>
<td>European Foundation Of Quality Management</td>
</tr>
<tr>
<td>EPS</td>
<td>Earnings Per Share</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EVM</td>
<td>Eigen-value Method</td>
</tr>
<tr>
<td>FAHP</td>
<td>Fuzzy Analytic Hierarchy Process</td>
</tr>
<tr>
<td>FI</td>
<td>Foreign Investment</td>
</tr>
<tr>
<td>FL</td>
<td>Financial Perspective</td>
</tr>
<tr>
<td>FPM</td>
<td>Fuzzy Programming Method</td>
</tr>
<tr>
<td>FPPM</td>
<td>Fuzzy Preference Programming Method</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GEM</td>
<td>Gradient Eigen-weight Method</td>
</tr>
<tr>
<td>GLSM</td>
<td>Geometric Least-Squares Method</td>
</tr>
<tr>
<td>HR</td>
<td>Human Resources</td>
</tr>
<tr>
<td>IP</td>
<td>Internal process</td>
</tr>
<tr>
<td>IS</td>
<td>Information Systems</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>KPIs</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>LGP</td>
<td>Logarithmic Goal Programming Method</td>
</tr>
<tr>
<td>LLS</td>
<td>Logarithmic Least Square Method</td>
</tr>
<tr>
<td>LP-GFW</td>
<td>Linear Programming method for Generating the most Favorable Weights</td>
</tr>
<tr>
<td>LRG</td>
<td>Learning and growth</td>
</tr>
<tr>
<td>LSM</td>
<td>Least Squire Method</td>
</tr>
<tr>
<td>MCDM</td>
<td>Multi-Criteria Decision-Making</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NOPAT</td>
<td>Net Operating Profit After Tax</td>
</tr>
<tr>
<td>OTD</td>
<td>On Time Delivery</td>
</tr>
<tr>
<td>PESA-II</td>
<td>Pareto Envelope base Selection Algorithm- II</td>
</tr>
<tr>
<td>PPM</td>
<td>Part Per Million</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RI</td>
<td>Random Consistency Index</td>
</tr>
<tr>
<td>ROA</td>
<td>Return On Assets</td>
</tr>
<tr>
<td>ROCE</td>
<td>Return On Capital Employed</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ROE</td>
<td>Return On Equity</td>
</tr>
<tr>
<td>ROI</td>
<td>Return On Investment</td>
</tr>
<tr>
<td>RWS</td>
<td>Roulette Wheel Selection</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>SME</td>
<td>Small And Medium Size Enterprises</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>SWOT</td>
<td>SWOT Analysis</td>
</tr>
<tr>
<td>TD</td>
<td>Total Deviation</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>WLSM</td>
<td>Weighted Least-Squares Method</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(c_1 \) Weight of criterion 1
\(c_2 \) Weight of criterion 2
\(c_3 \) Weight of criterion 3
\(P_A \) Priority of alternative A
\(P_B \) Priority of alternative B
\(ac_1 \) Priority of alternative A with respected to criterion 1
\(bc_1 \) Priority of alternative B with respected to criterion 1
\(ac_2 \) Priority of alternative A with respected to criterion 2
\(bc_2 \) Priority of alternative B with respected to criterion 2
\(ac_3 \) Priority of alternative A with respected to criterion 3
\(bc_3 \) Priority of alternative B with respected to criterion 3
\(n \) Matrix Size (number of compared objectives)
\(a_{ij} \) Comparing objective i with objective j
\(a_{ij}^{-1} \) Reciprocals of \(a_{ij} \)
\([a_{ij}]_{n \times n} \) Pair-wise comparison matrix
\(O_i \) Objective i
\(O_j \) Objective j
\(a_{11} \) Judgment ratio of objective 1 with respected to objective 1
\(a_{1n} \) Judgment ratio of objective 1 with respected to objective n
\(a_{n1} \) Judgment ratio of objective n with respected to objective 1
\(a_{nn} \) Judgment ratio of objective n with respected to objective n
\(\lambda_{\text{max}} \) Maximum Eigen-value
\(\text{CR} \) Consistency ratio
\(\text{RI} \) Random index
\(Y_i \) Corresponding outcome
\(w_i \) Weight of \(i^{\text{th}} \) element
\(w_j \) Weight of \(j^{\text{th}} \) element
\(w_{ij} \)
Weight ratio of element \(i \) respect to \(j \)

\(\{w_{ij}\}_{n\times n} \)
Matrix of weight ratios

\(w_{ik} \)
Weight ratio of element \(i \) respect to \(k \)

\(w_{kj} \)
Weight ratio of element \(k \) respect to \(j \)

\(W \)
Weighting vector (priority vector)

\(w_1, w_2, \ldots, w_n \)
Weight of elements 1,2,…,\(n \)

\(w \)
Eigenvector of \(W \)

\(a_{ik} \)
Comparing objective \(i \) with objective \(k \)

\(a_{jk} \)
Comparing objective \(j \) with objective \(k \)

\(I \)
Identity matrix \(n \times n \)

\(\delta_{ij}^+, \delta_{ij}^- \)
Deviations variables

\(ch_i \)
\(i^{th} \) chromosome

\(K \)
Population size

\(\nu(ch_i) \)
Roulette wheel sector

\(F(ch_i) \)
Value of the fitness function of chromosome \(ch_i \)

\(p_s(ch_i) \)
Probability of selecting chromosome \(ch_i \)

\(a, b \)
Beginning and the end of the circle fragment

\(p_m \)
Probability of mutation

\(p_c \)
Probability of crossover

\(x_i \)
The \(i \)-th gene

\(Y_i \)
New value of the gene

\(U_i(0, 1) \)
Random variable

\(Z_i \)
Random variable

\(CV \)
Consistency vector

\(TD \)
Total deviation

\(F(x) \)
Fitness function
ACKNOWLEDGMENTS

All my praises are due to Allah; the most merciful, the most gracious, who gave me everything I have. Without his mercy and guidance, this work could not be completed.

I would like to express my deep appreciation for those who helped me throughout my way to finish my thesis. Without their great assistance, encouragement and follow up, this work would not have been achieved.

First, I would like to thank my supervisor Prof. Dr. Aly Ahmed Khattab for his kind supervision, fatherly guidance, continuous encouragement and support to make this research work successful.

I am also very lucky to have my thesis done under the supervision of Dr. Mohammed Fahmy. Not only for his scientific assessment throughout the progression of this thesis, but also for his guidance, patience, and continual support.

I would like to express my deep appreciation to Dr. Khaled Hosny Ibrahim. For his patience, his never-ending support, his time and intellectual guidance.

My deep thanks to my wife, who was always keen to support me and provide the appropriate atmosphere to complete my work.

Finally major credit goes to my family; my father and brothers who have continuously provided me with love, care and support. To all of them this thesis is dedicated.
ABSTRACT

Performance measurement is an important function for monitoring organizations strategic plan. Balanced scorecard (BSC) system developed by Kaplan and Norton is a performance measurement tool using financial and nonfinancial measures to provide an organization with ways to develop and evaluate strategic objectives and goals. BSC captures both leading and lagging performance measures, thereby providing a more balanced view of organizations performance. It has been revealed in the review of relevant literature that despite the satisfying levels achieved by balanced scorecard application, the method has some deficiencies in terms of implementation on a quantitative basis and that there remain some problems to be resolved. BSC weights are an important issue, because these weights reflect the importance of indicators to each other.

First objective of this study covers the measurement and evaluation of organizations performance using BSC. In this study BSC model is integrated with analytic hierarchy process (AHP) technique. The integrated model used to determine the organizations performance based on its vision and strategies. AHP used to estimate BSC indicators weights. One of the main problems in the AHP procedure is inconsistency of judgments and accuracy. Second objective of this study is to propose a new model for prioritization of BSC weights. This is achieved through a proposed prioritization model which combines AHP and Genetic Algorithm (GA) called AHPGA model. The new prioritization model is modeled and analyzed using MATLAB. Verification of the proposed AHPGA model is performed in numerous cases.

The proposed BSC model applied to an industrial company as a real case study. The results show that BSC model is a successful and acceptable tool to measure and improve organizations performance. Performance indicators with different structures included in BSC can be consolidated with the help of AHP. Results
of proposed AHPGA prioritization model are compared with other BSC prioritization methods reported in the literature. Comparisons show that the proposed AHPGA prioritization model yields better and accurate results than the others models used. The proposed AHPGA model gives realistic and more accurate results (within tested limits in this search) in case of consistent ($0.003 < \text{Consistency Ratio (CR)} < 0.1$) and inconsistent matrices ($0.229 > \text{CR} > 0.1$). Thesis results show also that the developed BSC model is a good tool for monitoring organizations strategic plan. Finally, modification in GA parameter setting may be needed for the proposed prioritization AHPGA model in case of high consistent (CR < 0.003) and high inconsistent (CR > 0.229) matrices.
CHAPTER 1

INTRODUCTION

1.1 Background

Organizational performance has always exerted considerable influence on the actions of companies. Every organization has its performance measurement system to evaluate its progress. Many organizations have mission and visions statements, which are translated into business strategies. Limited numbers of organizations are able to fully implement their strategies. A number of innovative management and strategic control techniques have been developed over the past two decades aimed at evaluating – from a strategic management perspective – the results of the activities carried out by a business.

The Balanced Scorecard (BSC) is an approach to strategic management and performance evaluation depending on organization mission and strategies. BSC developed by Drs. Robert Kaplan and David Norton (Harvard Business School) in 1992. BSC is an effective tool that can help managers to translate visions and strategies into integrated set of performance objectives and measures. BSC captures both leading and lagging performance measures, thereby providing a more balanced view of organizations performance. Previous systems for performance measurement that incorporated nonfinancial measurements used ad hoc collections of performance measures. More like checklists of measures for managers to keep track of and improve a comprehensive system of linked measurements. BSC emphasizes the linkage of measurement to strategy and the cause and effect linkages that describe the hypotheses of the strategy [1].

Kaplan and Norton present four perspectives that need to be balanced in performance measurement system: financial, customer, internal business process and learning and growth. In BSC not only financial lagging indicators but also leading indicators such as customer, internal business process and